DRAWING
GOMPUTERS

DRAWING WITH COMPUTERS

MARK WILSON

DRAWING
WITH
COMPUTERS

A PERIGEE BOOK

A NOTE ABOUT THE FLIP IMAGES

AS A WAY of illustrating the themes of
this book, the upper right-hand corner of
each page spread contains a line drawing,
These are individual illustrations, but they
are also part of an evolutionary sequence.
Flip the pages and watch what happens,
The device is as old as the hills, borrowed
from Eadweard Muybridge’s photographic
sequences, movie animation, and every
schoolchild’s dog-eared notebook. Each of
these images was generated with the soft-
ware that will be discussed and explained

in this book.

PERIGEE BOOKS
are published by
The Putnam Publishing Group
200 Madison Avenue
New York, New York 10016

Copyright © 1985 by Mark Wilson
All rights reserved. This book, or parts thereof,
may not be reproduced in any form without permission,
Published simultaneously in Canada by
General Publishing Co. Limited, Toronto.
Designed by Helen Barrow

Library of Congress Cataloging in Publication Data

Wilson, Mark, date.
Drawing with computers,

Bibliography: p.
1. Computer drawing. 1. Title.
NC740.W5 1985 760 85-3670
ISBN 0-399-51136-9

Printed in the United States of America
12345678910

PREFACE

THE PREFACE is intended to be the first thing you read, but it is my final task in writing this
book. Computer graphics and art are both vast and complex subjects; to write about the
melding of them is not easy. While relatively little has been written about computer art-
work, already there is much to be said and there will be even more to be said in the future.
Thus, this book can only serve as an introduction to an evolving and dynamic field.

The book contains an overview of the common types of hardware used in computer
graphics. Examples of simple software routines are also included. These routines are only
examples and do not incorporate error checking or error handling. Most of these programs
are not even complete, but rather are intended as samples which you can build, embroider,
and embellish to your heart’s content.

My interest is in static, two-dimensional artwork, and the discussions and illustra-
tions in this book reflect that fact. A great deal of the power and versatility of the computer
lies in its ability to create moving, animated images as well. | have not discussed the possi-
bilities of cinematic imagery, but | would certainly not pretend that they are not very im-
portant. If your interest lies in this other dimension, | heartily encourage you to pursue it

A number of artists who use the computer have graciously allowed me to reproduce
their work. | am in their debt. Several manufacturers have also provided photographs for
which | am thankful. My three sons, Seth, Webster, and Winfield, have kindly endured and
tolerated their father's computer madness. Finally, | must thank my wife, Pamela, for her
support and help.

6
DRAWING WITH COMPUTERS

CONTENTS

4 A NOTE ABOUT THE FLIP IMAGES

5 PREFACE

8 INTRODUCTION

13 1. WHY USE COMPUTERS FOR ART MAKING?
14 COMPATIBILITY WITH OTHER TECHNIQUES

15 COST AND AVAILABILITY

16 IMPROVED PRODUCTIVITY
17 THEME AND VARIATIONS

18 THE TOOLBOX
21 2. WHAT MEETS THE EYE: DISPLAYING COMPUTER GRAPHICS
21 THE CREATION OF GRAPHIC INFORMATION
22 VIDEO AND COLOR MIXING
24 PHOTOGRAPHING THE VIDEO SCREEN
25 RESOLUTION
26 BIT-MAPPED DISPLAYS
28 THE FUTURE OF THE SHADOW MASK CRT
28 PRINTERS
32 PLOTTERS
40 3. UNDERSTANDING GRAPHICS SOFTWARE
42 BASIC DIALECTS
44 LOGO
44 COORDINATE SYSTEMS: HOW TO DEFINE SPACE WITH

NUMBERS
VECTOR GENERATION: DRAWING LINES

49 STANDARD GRAPHICS COMMANDS

52 COMMUNICATIONS: THE MACHINES SPEAK TO ONE

ANOTHER

55

57

65
72

76

78

83

C 88

96
97
98

103

105
106
107
113
116
118

119
126
127
128

9.

0] L LI |

... LK J

CICIC R IO] i
UICIC S0) 2010000000
LICILE I I I ICICIC] i
LIOICICIC COOO000000LC L]
EnsEEEsE SRR EE
OO000000O00O0C [ﬁ]
| SO JC I IO |s
IsEEEEEEEAEEEEEE)
ST JOOCO000N v
LI I IC I I]C]
] OO [

] ST

v—w—*]r—i --1»[f
COCICCICICK as [}
[l 'm
Cl OIS LI
O OCCOOOOO0O000C
OOt 000000 LILE

. FIRST PRINCIPLES: HOW TO MAKE YOUR PLOTTER DO

SOMETHING/ANYTHING

. ONE HUNDRED SQUARES: BEGINNING GRAPHICS

PROGRAMMING
HATCHPLOT
INTERACTIVE HATCHPLOT

PAINT SYSTEMS: DRAWING AND PAINTING ON YOUR
VIDEO SCREEN

A PAINT SAMPLE

DIGITIZERS, MICE, JOYSTICKS, LIGHT PENS

SCREENDUMP: TRANSFERRING A SCREEN IMAGE TO A
PLOTTER OR A PRINTER

CIRCLES AND POLYGONS

POLAR COORDINATES

SKEW AND ROTATE

ROTATION

THE TWO-DIMENSIONAL TRANSFORMATION
THE DEGENERATE LINE

PHOTOGRAPHY

10. PERSPECTIVE: THREE-DIMENSIONAL GRAPHICS

ROTATION ABOUT THREE AXES

THE PERSPECTIVE PROJECTION

REALISM AND THE SYNTHETIC PICTURE

THE SUCCESSES AND FAILURES OF THE SYNTHETIC PICTURE
FRACTALS

11. PAST, PRESENT, AND FUTURE

GLOSSARY

BIBLIOGRAPHY

INDEX

8
DRAWING WITH COMPUTERS

INTRODUCTION

v

“A picture is worth 1024 words . ..
Quoted in The Computer Image,
by Donald Greenberg, et al.

A ROAD to Point Reyes stretches toward the bay. The road bends behind a rocky outcrop-
ping. Double rainbows arch over islands in the bay. It appears to be a spring day. Puddles
of water stand by the roadsiae, reflecting the blossoms of forsythia that grow next to the
highway. The islands and the distant shore are veiled with a thin layer of fog.

Fig. |. The Road to Point Reyes, is a computer-generated picture. It was not painted
by an artist standing in front of an easel, carefully studying and sketching the landscape.
Nor was the picture made with a camera. This image, The Road to Point Reyes, was created
in a way that is completely different from all previous techniques of creating images. This
picture was generated by a computer using software by a team of computer scientists-
programmers-artists. This image 1s a product of extraordinary technical complexity. Mathe-
matics, art, and computer science were all wedded together in communal picture making.

This landscape was defined using patches, polygons, fractals, particle sys-
tems, and a variety of procedural models. The various elements were ren-
dered separately and later composited. Rob Cook designed the picture and
did the texturing and shading, including the road, hills, fence, rainbow, shad-
ows, and reflections. Loren Carpenter used fractals for the mountains, rock,
and lake, and a special atmosphere program for the sky and haze. Tom Porter
provided the procedurally drawn texture for the hills and wrote the compos-
iting software. Bill Reeves used his particle systems for the grass and wrote
the modeling software. David Salesin put the nipples in the puddles. Alvy Ray
Smith rendered the forsythia plants, using a procedural model. The visible
surface software was written by Loren Carpenter, and the anti-aliasing soft-
wate by Rob Cook. The picture was rendered using an lkonas graphics pro-
cessor and frame bufters, and was scanned on a Color Fire 240 . the
resolution is 4K X 4K, 24 bits per pixel. [Computer Graphics, vol. 17, no. 3,
July 1983 p 420.|

The image Point Reyes is an extreme example of computer graphics. It is extreme
because it represents the most advanced and technically sophisticated use of the computer
1o create images. Not all computer graphics rely on a committee to make a picture, and not

9

INTRODUCTION

FIG. 1. The Road to Point Reyes, 1983 screen photograph, © 1983 Lucasfilm Ltd. Photograph
courtesy of Lucasfilm,

all computer graphics are intended to render impressionistic landscape scenes. But this
picture may convey some of the subtlety and extraordinary range of computer graphics
Animated science-fiction movies, television commercials, and video games are instantly fa-
miliar examples of the uses of computer graphics. Less tamiliar, but nonetheless wide-
spread, are engineering, architectural, and scientiic applications of computer graphics
Slowly and persistently, artists have begun to explore and experniment using computers

Computers have become an active component of our lives in only the last thirty or
forty years. Just as children, when still very voung, discover drawing and painting as a way of
expressing themselves, the computer was also used to make pictures at an early stage. Vis-
ual information has great utility to all, whether children or adult computer programmers

Since computers are ultimately numernic machines, it has always been vital to have
the results—or the output—aot the computer in visual torm that is readily understandable
to the people using the computer. Teletype machines were onginally used to type intfor-
mation into and out of the computer. Later, modified television tubes were used to display
the output from the computer. About 1955, the first actual drawing machines were used
with computers. Both the IBM Corporation and Califorma Computers (CalComp) devel-

10
DRAWING WITH COMPUTERS

oped devices called plotters. These machines could draw lines on sheets or rolls of paper
and were controlled by computers. About the same time, the oscilloscope tube was modi-
fied so that it could be used for the monochromatic display of graphic information. Televi-
sion technology was developing rapidly, and the television set was adapted to display
computer-generated information. Eventually color television technology became incor-
porated into the multihued displays of computer graphics. As these hardware develop-
ments occurred, the software necessary to fully exploit these machines was also being
written. By the late 1960s computer graphics was no longer a curiosity but was beginning to
have widespread application in industry and science. It was particularly useful in industrial
design and engineering.

Parallel to the commercial, industrial, and scientific use of computer graphics, an-
other profound development was occurring. The Intel Corporation, which manufactured
miniaturized electronic circuits, developed a new circuit that was etched on a small piece
of polished silicon. This new circuit contained the entire main processing unit of a com-
puter. Although this circuit, the 8008, was not very powerful, it was to transform our elec-
tronic technology. The small, cheap computer was born. Since the invention of the 8008 in
1973, microprocessing chips have become much cheaper and much more capable, With
the advent of inexpensive microcomputers, millions of people have begun to explore the
potential of these machines. It is against this background that we will discuss the possibili-
ties of art making with the microcomputer.

WHY TRY TO DRAW WITH A MICROCOMPUTER?

THE SPANISH CAVES of Altamira are a favorite starting point for any history of art, While
this is hardly a history, let us not fail that venerable tradition. On the walls of Altamira, pre-
historic people painted and drew surprisingly realistic images of ice-age animals. No one is
certain what the purpose of these images was, but there is a general assumption that the
pictures must have had some connection to the hunt. They may have been believed to
have some magical or ritualistic power. They may have been venerated as religious icons.
Whatever the true purpose of the drawings, it is notable that they were made deep in the
caverns.

Picture making, as far as anyone can determine, is older than any written language
and represents an important human activity. With the frenzied proliferation of images in
today’s world, it is good to remind ourselves that image making is a profoundly important
and ancient human activity.

A toddler is learning to draw pictures. How children learn and how they learn to
make pictures are complex processes, but one thing is immediately obvious: The tool,
whether brush or pen or stick, moves across an empty field and leaves a trace. This ele-
mental process is a source of wonderment to the child. It is also a source of wonderment to

mn
INTRODUCTION

O00o00000000000000000
000000000 0000000000
0000000000000ao0ao0a
ooo00o000D0000000000
00ogooooooocooaooooo
O000000000000000000
goopooooooopoooooaoa
injaiuininjsinisinis|sisin|sisis]s]s)
0o0Dooocoo0ooopoooogoa
0000000 000000000acao
aisisinjuisisinisiniaisinisisiais|e]e
00o0000000ooooopnooon
00oo0oCco0onoonopooon
ooooooooooooonoooon
oo0o0n0o0000000000000
Ooo00oO000ooaonoonnoon
0g0ooanooocooooocooan
OOo0oDOoo0naoooonoonoon
ooopoooooooocooooon
CcOoooooonooooppooooan

the mature artist. Give an artist an unfamiliar tool and watch the pleasure—and perhaps
frustration—as he or she learns and discovers the virtues and vices of the new art-making
instrument. It is like the eternal satisfaction we all feel when drawing in the untouched
sand of the beach. Drawing and painting are activities that, quite apart from the intellec-
tual and aesthetic, have a purely tactile and sensory quality.

While the child—small or large—is delighting in the pleasure of manipulating the
brush or stylus or whatever, something else is simultaneously occurring: Pictures depict.
The things depicted can be simple or complex, from the logic diagram of a computer, a
cartoon of a politician, a preparatory drawing for a painting, to a crude outline that a child
regards as a picture of a dog.

People make pictures for many different reasons. The logic diagram of a computer is
intended to explain, or perhaps analyze, in a schematic manner, the relationships of differ-
ent objects or processes. The political cartoon communicates in another way. It may sup-
port a narrative description of people and events. It may also satirize these things not by
faithfully depicting the relationship of people or things, but by selectively exaggerating and
distorting them.

Pictures depict in a variety of ways. The depiction can be as simple as the child’s
drawing or as subtle and complex as Rembrandt’s etchings. At the same time, modern life
confronts us with a bewildering quantity of images. Consider the supermarket. The shelves
are lined with thousands of cleverly and subtly designed packages. Television, magazines,
signs, and books all present a similiar spectacle.

What does any of this have to do with computer art? Computer art and computer
graphics are an unusually powerful and versatile new tool for the artist to use. Generating
pictures with a number-processing machine is a wholly new method of image making. For
the visual artist, this is exciting news. It is like having a new set of colors to use, or having a
new brush unlike any other.

Because this way of making pictures is new, it is easy to be like the small child who is
enraptured watching the trace of the pen. At a very early age, without hesitation, children
will draw a square or a circle or at least an approximation of such a figure. But try to pro-
gram a computer to draw a square or circle! While it is not a profoundly difficult task, it is
not a trivial one either. It requires skill and thoughtfulness. And because all computer
graphics are governed by the media of mathematics and computer languages, even simply
drawing a square calls any previous assumptions about drawing squares into question.
Thus, to my way of thinking, computer-generated art offers us an extraordinary opportu-
nity. It teaches us a new viewpoint, We must look at our old assumptions in a new light. In
a visual world where images are a cheap commaodity, we are forced to look upon the sim-
plest task in a fresh and exciting way.

Fig. 2 shows a drawing by Harold Cohen and his drawing program, AARON. It pro-
vides a good example of the complexity that exists behind computer pictures. Cohen is an
accomplished British abstract painter and draftsman who became involved with computers

Oooooooooooooooooanoo

12

DRAWING WITH COMPUTERS

FIG. 2. Harold Cohen, 1983 black-and-white AARON drawing, india ink on paper, 22" x 30",
Photograph © 1983 Becky Cohen.

in the late 1960s. AARON could best be described as an automatic drawing program. When
the computer and pen plotter are turned on, the machines proceed to make drawings.
Aside from paper changing, the program runs without any input or intervention from the
artist. The AARON program produces drawings quite unlike what is commonly thought of
as computer art. AARON is, perhaps, a bit like our small child

Designing and constructing the set of procedures—algorithms—that control the
AARON program represent an extremely sophisticated level of computer science. In writ-
ing this program, Cohen employed many advanced concepts of artificial intelligence.
While the drawings may look easy to make—indeed, they hardly look as if they were made
by a machine—the assumptions and procedures that comprise the AARON program are
anything but simple. Consider the elemental act of drawing a line from one point to an-
other. AARON moves the pen in a series of sectors from point to point

SECTORS produce a series of “imagined” partial destinations—signposts, as it
were—each designed to bring the line closer to its final end state. On setting
up edach of these signposts it passes control to CURVES, whose function is to
generate a series of movements of the pen which will make it veer towards,
rather than to actually reach, the current signpost. [Harold Cohen, “What |s
an Image?”|

Suddenly, the trivial task of moving our pen from one point to another takes on a
complexity that we may have never before considered. It 15 not that the computer is stupid,
which it 15, but rather that we are smarter than we thought.

In the meantime, the task at hand will be somewhat easier if we proceed to use
simple, step-by-step procedures to develop computing skills and programs. As we progress,
we will discuss the application of these skills to art making

13

1. WHY USE COMPUTERS FOR ART MAKING?

THIS QUESTION has both a positive and a negative aspect. The artist has a wide range of
media in which to work—oil or acrylic paints, water colors, pencil, pen, chalk, even air-
brush. Sculpture employs a similar diversity of methods and materials. But types of art
media have tended to be somewhat limited by an embedded tradition, as well as archival
considerations. The twentieth century has seen much experimentation with artistic media,
and the computer is only one of many recent options available to the artist

Image making with computers has great advantages. Because of the peculiar way
pictures are generated with the computer, we gain benefits unavailable with any other
medium. Images can be generated quickly and cheaply. Once images are generated as a
series of numbers stored in the computer, they can be manipulated with a bewildering va-
riety of computational techniques. The new visual technologies associated with computer
graphics offer new aesthetic insights. The intense inner glowing of the color phosphors on
a high-resolution monitor are beautiful. Video artists have awakened our sensibilities to the

FIG. 1. Manfred Mohr. P161 = 6, 1973 plotter FIG. 2. Manfred Mohr. P197 A, 1977 plotter
drawing, 17" x 17",

@ 1973 Manfred Mohr. drawing, 24" x 24", © 1977 Manfred Mohr.

2

.

;i\\
=
5
4

ﬂ’“ b‘:
s(L

|

A

¥
o
5

Q&

”
X

‘

s

5 -4

.

= S
~ 5

o8
i
i/
Q

&

Vi

‘?\.’Y)..

\l
T
a8
é{
=7

>

.o - =
FIG. 3. Harry Holland. Krazy3, 1983 screen photograph of an image produced with an AED 512
color display controller, using a DEC LSI-11 as host processor. © 1983 Harry Holland.

possibilities of the moving image on a television screen. And computer art is still em-
bryonic.

Computer-generated artwork may in the future continue to exploit exotic devices,
such as electrostatic color plotters and laser printers. It is also possible that some type of
ink-jet technology can be adapted for artistic uses. In the meantime, the possibilities for
the visual artist are fertile and wide ranging. Artists have always valued technical advances
in the media at their disposal. The invention of oil and acrylic paints, the discovery of pho-
tography have all triggered aesthetic advances in the visual arts. Computers and computing
will have a similar impact.

COMPATIBILITY WITH OTHER TECHNIQUES

PRESENTLY, the available techniques for an artist using a computer have only limited com-
patibility with traditional artistic media. The computer and associated peripheral devices
that are commonly available cannot make an oil painting. We can approximate the quali-
ties of a painting using a high-resolution color display or a multiple-color printer or plotter.
There are photographic techniques, such as the 3M Company Scanamural process, that will
produce a large painting from any type of artwork. Plotters produce drawings on paper that
are essentially indistinguishable from traditional handmade drawings. But artists have
painstakingly explored the qualities of paint over the centuries, and there is no way that a
graphics display system can reproduce all of the physical richness of paint.

Commercial demands of the marketplace determine what type of peripheral devices
will be produced. Business needs printers. Computer manufacturers have responded by
manufacturing many types of excellent printers. But there exists at least presently a minus-
cule demand for a machine that can be hooked to a computer to move a brush around a
canvas. As artists, we can only hope that someday such machines will exist, and that they
will not cost a fortune.

Many artists simply do not know much about computers and computing. Obviously,
as artists become acquainted with the unique capacities of the computer for creating pic-

15 0D00DNONOO0DOON0O00O0DO
WHY USE COMPUTERS FOR ART MAKING? gooooDoooooonoonooooono
oopoOopQOoOoDOO0OoDOOCOoOnooOn
000DO0DOO0OBODO0OOODOO0O0OO
ogoooooooooooaooonno
0OoCo000DODOOODOUDODOOOO
fopoOoDOO0OODODOOOOO0ORO

ooooooodpoooOopoOoOo0ooO0O0oa
oooDoOoOoOoOO0ODOOOoUOOoOoOODO
0o0opDo000DgooooOpDOapDoooeao

ooopdoogOopoOOoOOooDOoOOoODo
o00oDOo0O0oO00O0O00CO00QooOOoODO
00opo0ooO0do0oo0O0OpoOoooooona
ooopopooOpQNpDOO0ODOODOOODO
00oo0o0Do0OOoO0o0oo0O0OocO0on [sRS)
oopopopoopoooocaonn
00o0oDo0o0oo0O0O0pDOo00DO0OoO0
oopooopDOoOOoOoODoDoDODoO0o
oCoo0oOopoOoOooooOooOooon
ggpoopOooopooOooooo

tures, their comfort with these machines will increase, But computing may not hold the an-
swer for all artists—and why should it? All artists are not interested in using photography as
an adjunct to picture making, either.

COST AND AVAILABILITY

IN THE ANCIENT DAYS of computing, twenty or thirty years ago, computing was not only
very expensive, it was also a very scarce resource. Early computing also suffered from the
fact that hardly anyone knew how to make computers do anything. Today, computers are
cheap. They are easy to use, and BASIC is simple to learn and universally available in mi-
crocomputers. Still, not everyone can afford a computer system. A realistic budget for
someone interested in producing low-cost computer graphics or artwork would include a
computer in the $500 to $1500 range, such as an Apple Il or an IBM PCjr. This type of system
would include at least a single disk drive, which is absolutely essential. Someone once said,
“Life begins with a disk drive.” Cassettes have a very large capacity and are very inexpen-
sive, but they are simply too slow.

If the computer does not have an integral screen display and has color graphics ca-
pability, then a color monitor or color television set with an RF modulator—to convert the
video signal—would be highly desirable. The great stumbling block in any sort of computer
graphics system is the question of hard copy. Hard copy is defined as graphic information
from the computer that is permanently stored in nonelectronic form. This could be a pho-
tograph, a printout, a plot, or anything else that offers a visually accessible record of what
the computer did. Printouts are usually thought of as the output of a line printer that has
been noisily printed on a long sheet of paper. But printouts could also be made on ther-
mally sensitive paper; they could be produced by an ink-jet printer or made by an elec-
trostatic plotter. Hard-copy devices are very diverse, both in their electronic and
mechanical operation and their cost. A minimal base cost for a hard-copy device would
probably be about $250, with a realistic median price in the range of $500 to $1000. The
minimal expense for a mid-range system for computer graphics would, therefore, probably
be in the area of $1000 to $2000. In addition, there will be a certain overhead in the form of
consumable supplies, such as paper, pens, and ribbons.

Any sort of discussion about the costs of more expensive systems is interesting but
essentially futile. All of the components of such systems—computer, graphics display sys-
tem, and hard-copy device—increase in cost on a smooth curve that simply has no upper
limit. Naturally, prices have fallen dramatically for much equipment and software. But,
nonetheless, much computer graphics equipment is beyond the financial reach of most in-
dividuals. The future holds much promise, however. The rapid increase in computing
power from new microprocessors, and the plummeting cost of memory should result in
great improvements in cost-effectiveness of computer graphics devices.

16

22- AT, 1) AL 1]] AL NG
TN T HELNE

Ll

o

FIGS. 42 and 4b. Terry Blum. Folded Structures, 1983 sequential screen photographs. The hardware
is a Cromemco Z-2HGS, and the software was written by John Dunn. © 1983 Terry Blum.

Another significant but mostly hidden cost of any computer system is the expense of
the training to use it. This cost may be quite large if the user is unfamiliar with computers.
The training costs may consist of fees for actually attending classes or they may be in the
form of the time that a person spends playing with the machine in order to make it perform
some constructive task. Any new peripheral device that you add will always require learn-
ing time and perhaps training in its use.

Computer graphics equipment may not seem so expensive when the cost of more
conventional art-making equipment is considered. A sculptor, for instance, might easily
have many thousands of dollars invested in tools, equipment, and materials. A video artist
or photographer would be another good example of one who must invest heavily in tech-
nological machinery. Expenditures and investments are required no matter what type of art
you make, Often the outlay a computer artist must make will not be more than that re-
quired for other types of art making.

IMPROVED PRODUCTIVITY

ARTISTS MAY CRINGE at having such a word as productivity associated with their exalted
endeavors, but the plain fact of the matter is that artists make things with their hands. Per-
forming a repetitive task very accurately, over and over and over again, is grist for the com-
puter’s mill. Computers can make certain types of pictures much faster than the artist’s
hand. Not only can these machines make pictures faster, but they reduce or eliminate the
drudgery of making the pictures.

Word processing is an extremely useful tool for writers. Word processing does not
write books, reports, or letters. The writer writes them. Word processing makes writing eas-
ier and faster. Editing becomes much swifter and retyping is eliminated. Making artwork
with the computer is similar. The computer can make pictures faster. This has several im-
portant ramifications, The artist can produce a larger number of works in a given time than
would be possible using conventional techniques. If computers were incapable of any-
thing else, it seems that this fact would justify and recommend their use. But whether the
images are simple or complex, the improved productivity of the art-making process means
that more possibilities are opened for the artistic imagination. Works that you might never
have considered because of their complexity and the potential drudgery of making them
can be attempted with the digital computer.

Another important virtue is to minimize the time spent on false starts or dead ends.
Suppose you embark on a drawing and, in the process, it becomes apparent that the work
is a failure, or you simply lose interest. While the computer cannot eliminate the artistic
false start or wrong direction, it can reduce the time committed to such unsuccessful
works. Because it enables the artist to explore different avenues without the onerous con-
straint of large time commitments, the computer really fosters creativity and experimenta-
tion.

17 pDODooOoOo0Oo0opDoOoOooORUOODO
WHY USE COMPUTERS FOR ART MAKING? oopooooooopoopoboonoo
CoOQoooOooQoDoOpoopadpoooa

goQoopoooogooopopoaoca

gdpopopooooodpooecogpoona

go0oooooOoooooapeoooaoca

oagpooopoocooooooopooo

COoopDoOoOoadCcoopDooDooooon

goooogopoopnooogpoopooo

DNOODPNO0DOCOO0DOODO0OO0OD

gooaocoagnoooopooogooooo

QooOQCcO0o0DO0Ooo0pDOoOooDoooapn

Oo0oO00—O00Do00o00oooOoooDoado

Dooooopoponoopoopoooan

QoUooOoOCUUoOUoOURDUoDoDoDoOoOoagoD

THEME AND VARIATIONS

ogpoogpoopn
gpooopooaoDao
apaoponpo
ggooogaon
gopoopanp

agoooooononopaoan
dooopooouooDoo
apooooonooooan
ocgpopoooaoapoan
aopgoooogpooaooo

COMPUTER IMAGES can be manipulated with a variety of techniques. Making pictures
usually involves a series of studies or sketches in which a concept is developed and elabo-
rated upon. The possible variations are often very large. Even when a final design is settled
upon, the artist may continue to produce variations on a theme. Josef Albers’s series of
color experiments entitled Homage to the Square, or Frank Stella’s themes and variations
among his large abstract paintings are notable examples.

After the creation of a model (the theme), the variations or permutations of that
model are natural consequences of the mathematical and procedural nature of computer
graphics. As an illustration of this ability to produce many possible variations on a single
archetype, it might be useful to look at an example slightly removed from the world of fine
arts. Donald Knuth, a distinguished computer scientist, wrote a computer program that is
capable of designing a multiplicity of type fonts. METAFONT, as the program is called, can
create wide and unexpected variations upon the simple theme of our ancient alphabet.

The alphabet, reduced to its most simple geometric elements, could be defined with
a few constituents: the circle, the half-circle, a horizontal line, a vertical line, and the two
45° diagonal lines. Over the centuries, these schematic elements have served as the basis
for a multitude of variations and alterations. In many cases, the alterations have been made
for purely visual reasons—to make the type more legible. In other examples, the develop-
ment of printing technologies has served as the incentive for change. Often, merely the
passage of time and with it the change in fashion, has pressed the evolution of letter forms,
Whatever the case, a casual glance at a printer’s sample book of fonts will reveal an extraor-
dinary variety of typography. Knuth’s METAFONT addresses this proliferation of typefaces
with a mathematical analysis of the elements involved in type design. The program can

FIG. 5. Donald E. Knuth. 1983 sample output from METAFONT. @ 1983 Donald E. Knuth. Image
created by Scott Kim, © 1983 Scott Kim.

Typography Trregrmhy Typography Typography Typography Typography
Typography Typography _Typography Typography _Typography Typography
Typography Typography Typography Typography _Typography Typography
Typography Typography Typography Typography Typography Typography
_Typography Typography ~ Typography Typography Typography Typography
Typography Tpcgrapty Typography Typography Typography Typography
Dpagraalr Brog=y Typography Typography Typography ZTypography

18

DRAWING WITH COMPUTERS

b & L
s i L &
e £
c% T

FIG. 6. METAFACE

Xf%\ V- ,(w T
I(‘f"\vr :

[T
}"f“‘i‘
-
g
173
E“"’\

-
'

mimic the great variety of existing fonts and is also capable of generating entirely new and
unanticipated designs.

METAFONT creates typefaces. Obviously this process is not the same as making an
artwork. But consider the problems and processes that are involved in depicting things. The
human face could be schematically rendered with a sparse set of lines and circles similar to
the minimal description of the alphabet. It would be possible to write a program—Iet’s call
it METAFACE—that would emulate some of the extraordinary variations of the face. The
parameters for the various visual descriptions of the face would be given to the program:
the size of the eyes, the location of the eyes, and so forth. Depending on the ambitiousness
of the programmer, the program could become exceedingly complex. The various dimen-
sions and proportions of something as familiar as the human face are hardly a simple mat-
ter. The actual rendering of the face would further complicate things. Do we shade? Do we
use thick or thin lines for the features? Even a few variables would produce a vast number
of different faces. Needless to say, the biochemical algorithm encoded in DNA, which is
the true creator of faces, would make our algorithm look pale indeed.

Just as METAFACE coulid create an infinite series of faces, consider, if you will, the
spectrum of human faces that artists have rendered over the centuries. Cultural and aes-
thetic pressures have influenced the artist in the stylization of the drawing or painting. The
artist is constantly exploring and experimenting with new possibilities of representation. If
the METAFACE program were cleverly designed, it might actually be able to mimic various
historical styles of art. Perhaps it could also hint at novel styles of art.

It is this capacity of computer hardware and software to quickly and effortlessly pro-
duce great variation within some common framework that offers the artist vast power. All
artists study the thematic possibilities of their work. Monet's Rouen Cathedral paintings, in
which he systematically explored the variation of light on the church facade, is a particu-
larly good and relevant instance. While we have been using the human face as an immedi-
ate example, the issue of theme and variation could be applied to any subject matter or
style.

THE TOOLBOX

COMPUTER GRAPHICS, in the words of Aaron Marcus, is a totally new toolbox for the art-
ist. Artists love tools. They make pictures and images with their tools, so it is natural that
they have a great deal of tactile involvement with their implements. Because this tool is
very different from the previous means of fabricating art objects, it seems natural that art-
ists will use it in unforeseen ways. It is impossible for the inquisitive artist to avoid being
fascinated by the possibilities of this medium. But it is always difficult and often frustrating
to learn the ways of a new tool. When the tool is so generalized and can be utilized in so

19
WHY USE COMPUTERS FOR ART MAKING?

gooQoooooDpooopoapooooon
0000o0o0ooUOQoOoDooDOooooooon
ooooOoDOoOoDOoOoooOpOOoDOon
Dopoopooooopofjooopoo
gopoopOo—poOopoO0oOooBDaon
BMocoocopoooooooopoopRan
gpooooo0opDOoDpDooooOoooQo
0o0oonDooopUOooDoOOoooonoon
OooOo0o0oO0DOCODDOODOODO0

opoaopopoooDoppDooooAapcan
googoooooocadpoogopoooeoaon
opooooDooooapooopnoopan
Oooo0o—O0O0o0ooODOoO000AOaon=an
opooooooDoOOooONubO0poOoOoOoOan
Opooo0oDOoO0OOocDOpDCcOoOoOoODoOO0

OpDOo00oopoooUDgoDoooOoan
Ood0o0oOopDOoO0O0pO0OUDOoOUOOoODODo
OooooaoooopPoopooooon
Oooo0ooogpoooOooooaQ 4
cogdOogocoopopDnoonoooa

a
oD

J

many ways, there is certain 1o be a period of learning and readjustment.

The artist Ed Oppenheimer uses a computer to study the possibilities of textile de-
signs as well as to set up the loom for his weavings (see Fig. 7). The speed of the computer
allows Oppenheimer to spend more of his time studying visual possibilities.

Whether this new tool is used for specialized applications, such as designing tex-
tiles, or to augment traditional artistic activities, its potential is very broad. The art-making
strategy can be simple or complex. Given the individualistic nature of the twentieth-
century artist, computer art will become not one genre, but many.

SIS TN VRl ¢ SRV B SRR s e

FIG. 7. Ed Oppenheimer. Geologic, 1983
weaving, 41” x 67", Design created with Apple
1. © 1983 Ed Oppenheimer.

20

FIGS. 1a, 1b, and 1c. Jane Veeder. Warpitout, 1982 sequence of screen photographs. Zgrass
computer language running on a Datamax UV-1 computer and digitizer. © 1982 Jane Veeder.

ya coooooooooooDoapo=0_—_0
popoppopooooofiooooopn
DogpopDoooouEoooonooooolE
cooopopoonoonoofjoooooo
pooppoo—oo=oofjonoooo
ftoopoooooooopappoon
opooop=sE00000000000000
opoocffjooocooooooooob
DoooROOobOpoOOoOpOOOonOon
opopopoooojoooooOO0O0OCOn
OooOoNOoOOoDOOoCOoOEOOBOn
ppcoooffjoocoooocooooooan
nopno—poaonponopopnooo=ocji
DooOoDOoDOOopOoOpDOoOoCOOCO0

poooopooonooooooEgnoo
gopoOoOoOoOoOOOODOOCDODOO0

OooodpDpoopDuUooDooDooonooon
popocooooooQoaoooococanoco
go—oocoooo” oo oooo
gopo—pooooppoapoan aoooo

2. WHAT MEETS THE EYE:
DISPLAYING COMPUTER GRAPHICS

MANY THINGS can be said about the incredible popularity of the ubiquitous video game,
but one of the central reasons for the games’ success is the appeal of computer graphics.
Although computer graphics have been actively used in industry for a decade, the video
game literally brought them into the home. This has several ramifications for the artist in-
terested in using the computer. Most important, the video game has driven the market to
produce inexpensive machines with graphic capabilities, so excellent graphics are available
in many personal computers. Most of these computers also allow the access of these graph-
ics through the resident BASIC language. More software, even staid business programs are
utilizing color graphics, simply because they represent a more efficient way to communi-
cate information.

Jane Veeder, a computer and video artist, has taken the concept of the video game
and used it as the basis of her artwork. At the 1982 SIGGRAPH computer graphics confer-
ence in Boston, her interactive video game, Warpitout, was one of the most intriguing ar-
tistic events. Viewers, or participants, would first have their faces photographed by a video
camera. That image would be digitized, or converted into a series of digital values. Once
digitized, the image could be manipulated and transformed with wonderful variety. Areas
of the face could be magnified and distorted. Lines and symbols could be added to the
image.

Warpitout is a dynamic, real-time artwork. It is a good example of the types of ma-
nipulations that can be readily applied to images, using the power of the computer.
Veeder’s work also demonstrates the kinds of artistic possibilities that an interactive com-
puter work possesses. Instead of an artwork that exists as an entity separate from the
viewer, Warpitout suggests the possibility of an ongoing, active participation of the viewer.
This, of course, is hardly a new notion, but the nature of the computer makes it possible for
the viewer to become actively involved in a new way.

THE CREATION OF GRAPHIC INFORMATION

THE COMPUTER has no intrinsic method of creating graphic information. Indeed, even
creating alphanumeric information is not necessarily an inherent part of the inner workings
of a computer. But because these machines are intended to be utilitarian devices, not digi-
tal abstractions, we must be able to obtain information that we can easily interpret. We

22
DRAWING WITH COMPUTERS

must be able to apprehend either visually or aurally the information the computer pro-
duces. The most obvious example of readily interpretable output is the information dis-
played on the monitor screen or printed or drawn on a sheet of paper. We will confine our
discussions to these two common types of output, which are analogous to the two most
common forms of two-dimensional art making—drawing and painting. The video display is
like a painting; the printed or plotted output is like a drawing. In the case of a painting, at
any given point we can see essentially only one color. Paints are usually, but not always,
opaque. When we paint, each new stroke of the brush covers and hides what is under-
neath, The same is true of video displays. Each given point on the screen can display only
one color at one time. Drawings are linear. They are composed of a series of narrow dis-
crete lines. The output of printers and plotters is likewise composed of discrete lines or
characters. It is possible to draw over other lines—in fact, it may often be desirable to do
so—because, in effect, the lines are transparent. However, the images can become muddy
and confused by repeated overlaying.

VIDEO AND COLOR MIXING

THE TELEVISION SET is universally familiar both for broadcast video and as an output de-
vice for computers, What is not so familiar is the rather extraordinary technology packed
into what has become a mundane electronic object. A stream of electrons is emitted by a
hot cathode at the rear of an evacuated glass tube. This cathode-ray tube—or CRT—con-
tains magnetic windings that can deflect the electron beam. The electronic circuitry of the
set controls these windings or plates. The electron beam reveals itself to our eyes when it
strikes the phosphorescent coating on the face of the CRT.

The light emitted by the phosphors decays after a short period of time. This period
of time can be anywhere from a few thousandths of a second to several seconds. This effect
is called persistence. In a broadcast television picture, with a constantly moving image, ob-
viously the persistence cannot be long lasting. However, if the persistence is too short
lived, the image will appear to flicker. If the persistence is too long, the image will appear to
be smeared.

The electron beam creates a spot of light on the screen, but the whole image is
created with a raster scan. The raster scan is a zigzag pattern that the electron beam traces
across the screen as it moves from top to bottom. The beam moves from right to left and is
automatically turned off as it moves back from left to right to begin scanning the next line.
The first raster scan traces across the odd lines in 1/60 second. The second scan traces
across the even lines in the next 1/60 second. This scanning of alternate lines is called in-
terlacing. Thus, one complete image or frame has been generated on the screen in 1/30 sec-
ond. Thirty images a second are created on the CRT, but our eyes and brain perceive this
rapid succession of pictures as a single, continuous image. This phenomenon is called the
persistence of vision. Motion pictures rely on the same effect, except that they commonly
use a slightly lower rate of twenty-four frames, or images, a second.

23 ﬁ:aamoﬁagcamﬂacmzcwc
) opoopo@ooooojuoooDon

WHAT MEETS THE EYE: DISPLAYING COMPUTER GRAPHICS 0D0OROOOOEOODO0O00 o
copoopooooojjocc@Booon

gpooocoo—op=cofooooon

Bocoo—oopoooocopfoopooOon

ODOOD=ECODNODODODDOGEOD

popoooffjoonooooc=coaoon

noo—poooopoooof coooo

coitoocooocoopooooon

oicoopoopOpRO=0000000

coopoioooopooODOoOoDoORO

pooo—oo ooooooo=oj

C00ODOCO—O0CODDO0OO0—0D00D0

goopoooooooooooa@oo=

OOoORODBOOO0CO0ODOCO00n

ODOo=S00000DOpPUODOODOD

gpopoooooopoopapappaon

oo —-ocoooopT oo oooo

cooo—oooopoooonjooaon

N

e

FIG. 2.

The creation of the broad spectrum of colors in the CRT or color television set is sim-
ilar in principle to the previous example but, cbviously, is a more complex matter. The ar-
rangement of the electron gun in the evacuated tube is the same, except that there are
three guns—red, green, and blue. Some systems have these guns arranged in a line and
some arrange them in a triangle, or delta. These guns project their individual beams toward
the screen where they intersect a metal grid, called the shadow mask. The shadow mask is
immediately behind the viewing surface of the CRT and consists of a matrix of very small
holes or slots. The three electron beams are directed toward these holes. The phosphors on
the CRT have been laid down in a pattern to correspond with the holes in the shadow
mask. Thus, immediately behind each hole is a triangular pattern of the three phosphor
colors—red, green, and blue. The function of the shadow mask is to prevent any stray
electrons from reaching adjacent holes in the mask.

It is plain that there is more than meets the eye in this cursory description of the
shadow mask CRT, The technology involved in creating an image on the screen of the tele-
vision set or monitor is complex and requires great precision, The electron guns must be

24
DRAWING WITH COMPUTERS

ADDITIVE
COLOR MIXTURE

SUBTRACTIVE
COLOR MIXTURE

FIG. 3.

very precisely aligned over the entire area of the screen. The degree of alignment is called
convergence. While the beams may be highly convergent in the center of the screen, the
convergence will most likely decrease toward the periphery of the CRT.

The rainbow variety of colors that light the screen is created by what is known as an
additive process. This is the opposite from the subtractive process that creates intermediate
hues when we mix paints. If we mix yellow and red paint we obtain orange. Red and blue
make purple, and so forth. Theoretically, in the subtractive process the three primary colors
when mixed together should produce black. In practice, a muddy brown is usually the re-
sult. In the additive color process, the three primary colors of light are red, green, and blue.
Combining these three colors together—as in the case when all three electron guns are si-
multaneously on—will produce white light. Green and red produce yellow; green and blue
produce cyan (a bluish tone); and red and blue produce magenta. Naturally, by varying the
relative intensity of the electron beams, many variations of hue, value, and chroma are re-
producible on the CRT,

The conventional color television set requires a video signal that is transmitted by
high-frequency radio. The video output of most lower-cost personal computers produces a
signal that is compatible with this broadcast standard, which is defined by the National
Television Standards Committee, or NTSC. When this NTSC signal is broadcast, it must be
modulated to the appropriate radio frequency. When a microcomputer outputs this NTSC
signal, an ordinary television set must first change the computer’s signal into the equivalent
of a broadcast signal. In other words, the NTSC signal must look like a broadcast signal.
Usually this change is performed with an RF modulator.

The NTSC video signal is also commonly called composite video. Some types of
monitors, called composite monitors, can only utilize this NTSC signal. These monitors pro-
duce a somewhat better quality image than a conventional television set. The best type of
video image is produced with RGB (red, green, blue) video signals. These signals are gen-
erated directly by the computer, They drive each electron gun individually. Because the
computer directly drives the monitor, images that have much more detail and a much
greater variety of colors can be produced.

PHOTOGRAPHING THE VIDEO SCREEN

IT IS OFTEN very useful to be able to record the image on the screen. There is a variety of
methods that can be used, but the most direct is simply to photograph the screen with a
35-mm camera and color slide film. Because the screen image is refreshed every 1/30 sec-
ond, it is important to use a slow shutter speed so that at least one full screen frame will

25 C o8 —cocooo=0—"1
WHAT MEETS THE EYE: DISPLAYING COMPUTER GRAPHICS : , =

4 _—
gur_am o0 0——=00==
—oooo .uD’lGD’ll‘gD
—_-uD cCcoflc0_ 0000080

—
BEf-vo=n_o=jvooo_uoan
oooopooo mnan:LuJD
ao nooo = Ial=] Qo
cono —0 EEEEEE | B

have been displayed while the shutter is open. At any shutter speed greater than 1/30 sec-
ond only a portion of the image will be captured. Thus, about 1/15 second is a desirable
speed. For static images, even slower speeds can be used. It is also helpful to photograph
the screen in a darkened room to eliminate extraneous reflections from the screen. Because
most monitor screens are relatively small, the standard 50-mm focal-length lens of a 35-mm
camera will produce distortion at the close distances necessary to photograph the screen. A
slightly longer focal-length lens, say 100 mm to 135 mm, will eliminate any of this “pin-
cushion” distortion.

Technically sophisticated camera systems are used for RGB color monitors. They
photograph each of the three color signals individually to make color images on the film. In
other words they first photograph the image created with the red gun, then reexpose the
film to the green image, and finally make a third exposure of the blue image. Such systems
produce superlative results but are also expensive. Some units cost in the range of $1000,
but most cost considerably more. For the casual user, direct photography with a good 35-
mm camera will usually produce more than satisfactory results.

Video cassette recorders are also excellent for recording the dynamic screen output
from the microcomputer. Since the video cassette recorder is designed for use with broad-
cast video, the computer must provide an NTSC video signal. Recording images from the
computer is easy. Plug the video output into the VCR. If a separate audio output from the
computer exists, it can also be recorded by the VCR. Recording the output from an RGB
video output requires specialized equipment.

RESOLUTION

RESOLUTION is a very important definition of image quality in computer graphics. Very
simply, resolution is a measure of the number of picture elements relative to the overall
image size. Most commonly, the term is applied to the amount of detail seen on the screen
of a video monitor. However, because we are dealing with digital machines, it is equally
applicable to any type of graphics output device, whether that is a video monitor, printer,
or plotter.

To say that the video resolution of a computer system was 320 X 200 would mean
that the display would have 320 pixels along the horizontal, or x, axis and 200 pixels along
the vertical, or y, axis. Usually, but not always, the horizontal axis dimension is given first,
followed by the vertical axis. Such a 320 X 200 display would Tontain 64,000 individual
pixels. The terms “high,” “medium,” and “low” resolution are invariably encountered in
any sort of descriptive literature about computers. They are highly subjective terms that
must be interpreted carefully. While 320 X 200 resolution in a low-cost personal computer
might be described as high resolution, the same display would probably be considered low
resolution in an industrial or scientific computer graphics system.

Resolution is an important measure of how much detail, and how much fidelity to a

FIG. 4a, FIG. 4b. FIG. 4¢,

depicted object, a computer-generated image will have. Almost all computer graphics out-
put devices rely on a rectangular grid of points. Within this matrix of points, individual
points can be addressed by the display device. This grid is fine for dealing with horizontal
and vertical elements. But in fact, diagonal, circular, and irregular lines and shapes domi-
nate the reality of our visual world. To depict these elements in a computer display, they
must be approximated with a series of horizontal and vertical picture elements.

To demonstrate this effect, Fig. 4 shows three illustrations of an identical figure
composed of circles and diagonal lines. At the lowest resolution, we have only a coarse
approximation of a circle, and, although the fidelity at the highest resolution is much im-
proved, the image still remains an approximation. Resolution is an important factor in the
transmission of visual information. The letter formed by a crude dot matrix printer is read
more slowly and with greater difficulty than the carefully formed letter that a letter quality
printer or typesetting would produce. High resolution is a necessity for rapid visual com-
munication; while desirable for artistic purposes, it is not a necessity.

Some machines can only display alphanumeric characters. The American Standard
Code for Information Interchange (ASCIl) defines a set of numbers, punctuation marks, a
space character, assorted control characters, and the upper- and lower-case alphabet. This
128 ASCII character set is universally available on all personal computers. There are no
special graphics characters in this set. Some microcomputers have special graphics charac-
ters in their character set. The Radio Shack Model | is an example. The Model | graphics
simply consist of solid block characters. Other manufacturers have used the strategy of
having characters that are definable by the user. Within the 8 X 8 pixel grid of the Texas
Instruments 99/4a computer, it is possible to specify whether any of the 64 pixels will be
either on or off. Computers with user-definable characters are more desirable than those
having only the alphanumeric ASCII but they are still limited in capabilities. For instance, it
is very difficult to use them to draw a line from one point to another.

Because the widespread use of color television sets as displays for personal com-
puters, the effective resolution for characters is about 40 characters horizontally and 24 or
25 characters vertically. This is about the maximum usable resolution obtainable with NTSC
video. Computers designed for business or word pracessing will usually have an 80 X 24 or
25 display. Even wider displays, up to 132 columns, are becoming common.

BIT-MAPPED DISPLAYS

MOST USEFUL to the artist, or for any type of computer graphics application, is the
bit-mapped display. This formidable phrase means that individual pixels in a video display

27

WHAT MEETS THE EYE: DISPLAYING COMPUTER GRAPHICS

can be turned either on or off, This type of graphics mode is also known as all-points-
addressable graphics. In the case of a monochrome display, each of the pixels can be either
black (turned off) or white (turned on). The actual color of the monochrome display may
be amber or green instead of white. In the example of a 320 X 200 monochrome display,
each pixel would be represented by one bit of memory. The memory in each case would be
either 1 or 0 corresponding to on or off.

A color display requires more memory. By using two bits of memory for each pixel
location, four colors can be defined.

00 = first color

01 = second color
10 = third color
11 = fourth color

In the example of a 320 X 200 display with four colors for each pixel, we arrive at the fol-
lowing calculation: 320 X 200 X 2 = 128,000. For these 128,000 memory locations we can
then arrive at the number of bytes of memory required. For a machine that uses eight-bit
words, the memory required for one four-color display would be 16,000 bytes: 128,000/8 =
16,000. This segment, or section, of memory is called the frame buffer or frame store. Be-
cause of the geometric nature of the screen and the number of colors to be displayed, high
resolution and multiple colors require extensive use of memory, For example, a 640 X 400
screen resolution with sixteen possible colors for each pixel (four bits for 2* colors) would
require—640 X 400 X 4 = 1,024,000—more than a million memory locations. Using eight-bit
memory would mean 128,000 bytes for such a display. Very high resolution systems that
feature a large number of possible colors not only use massive amounts of memory but
they must also continuously transfer this information between the computer and the dis-
play thirty times a second. These very high data transmission rates require specialized pro-
cessing. Because of the memory required and the problems associated with the very high
speeds required by the data transmission, very high resolution graphics systems are still
quite expensive. Fortunately, the cost of memory has dropped radically, and the computing
power necessary to control these graphics displays has increased in availability. We can ex-
pect the cost to continue to fall for computer graphics displays,

To increase the number of possible colors in a display, a common device called a
color lookup table (see Fig. 5 on p. 28) is frequently employed. A color lookup table repre-
sents a preset index of analog color values that will be sent to the electron guns in the
monitor. While the graphics display may have, for instance, only sixteen colors that can be
displayed at a given moment, those sixteen colors may in fact be able to be selected from a
much larger palette.

This device has been used to produce cost-effective displays. But with the decreas-
ing cost of memory it is probable that more devices will use a direct definition system,
where each possible color is represented in memory without the use of a lookup table,

28

LOOKUP TABLES ! 7

1 / (BINARY=2) IR,
b
2

NARY= 15
\ 8! -152) UL G

FIG. 5.

Wl
CBINARY=131)

THE FUTURE OF THE SHADOW MASK CRT

PRINTERS

THE SHADOW MASK CRT is a remarkable technological device. It has clearly gained domi-
nance over all other display devices. Yet it has important technical limitations. While 1024
X 1024 CRTs are common, the upper range of resolution is limited. Presently it is less than
the 2000 X 2000 resolution of a conventional photograph. Color monitors with resolution
exceeding 1024 X 1024 are very expensive; often their cost exceeds that of an entire micro-
computer system. Progress continues on the development of the CRT, and, for the time
being, there are no immediate prospects that it will lose its dominance.

However, several other types of display devices deserve mention. Before the raster
scan displays became widespread, the calligraphic or vector displays were common. These
machines are similar in principal to the raster scan displays, but instead of drawing the en-
tire image with the raster pattern, the electron beam would be moved directly from one
point to another. Instead of retracing the linear pattern, a supply of electrons maintains the
phosphor glow on the surface of the tube. For many years, such direct-view storage tubes,
as they are known, were the mainstay of computer graphics. They are still used in some in-
dustrial settings, but are not used in any personal computer products.

Presently, there appear to be no potentially dramatic breakthroughs in display tech-
nology. Two areas of technological development have the possibility of producing interest-
ing devices in the future. Plasma displays and liquid crystal technology have limited current
application but will undoubtedly become more important. Plasma displays are flat, with an
embedded grid of fine wires. The intersections of the wires, when activated, cause a gas to
glow. In addition to the advantage of being flat, plasma displays are capable of very high
resolution. Currently, only monochrome plasma displays have been manufactured. Liquid
crystal displays have been very widely used in wristwatches, but they too are monochrome.
They are also flat and compact but have relatively poor contrast and can be difficult to see
in certain lighting situations. Color liquid crystal displays have been produced, and it is to
be expected that there will be future developments in this area.

AFTER THE MONITOR, the most common device associated with computer output is the
printer. Printers are available in a bewildering variety of types. Their great utility arises from
the fact that they create a permanent copy of computer-generated information, whether it
be an address label, a letter, program listing, or graphic output.

Printers range from those that are relatively inexpensive to ones that are more ex-
pensive than a complete microcomputer system. Although they are not necessarily the
most desirable type of machine with which to display artwork, their universality offers a
natural and immediate possibility for artistic use,

FIG. 6. Waldemar Cordeiro. Derivate from an Image,
Transformation No. 2, 1971, line printer, © 1971 Waldemar
Cordeiro.

IMPACT PRINTERS

The two major types of printers are the dot matrix and the letter quality printer
(LQP). The dot matrix printer forms characters on the paper by using a graphic equivalent
of the screen generation of characters. The alphanumeric characters are composed of small
dots—analogous to pixels on the screen. The print head of the printer contains a series of
small wires or needles that are actuated by electric solenoids. The wires are struck by the
solenoid, and in turn strike a carbon ribbon, which makes a small dot on the paper. The
print head moves laterally across the carriage to create a line of printed characters. The let-
ter quality printer operates on a similar mechanical principle except that a plastic or metal
print element with completely and precisely formed characters is struck by the solenoid
hammer. The printing elements are arranged in a variety of configurations: daisy wheels,
thimbles, and balls, In most cases, letter quality printing elements will only contain the
standard ASCII character set with no special graphics characters. Letter quality printers, de-
spite the superior printing quality, have generally not been used for artistic endeavors. Be-
cause both the dot matrix and LQP printers rely on the mechanical impact of a printing
element, they are known as impact printers,

Dot matrix printers are widely used for graphics purposes. Because individual dots
comprise the image, with the appropriate firmware—software stored in read-only memory
(ROM) in the printer—it is possible to print individual dots, In such dot matrix printers
with graphics capability, the effective resolution on the paper may be fairly high. Depend-
ing on the accuracy of the printer, the resolution may range from 50 dots per inch to over
150 dots per inch. As with video displays, this ability to print individual dots is called bit-
mapped or dot-addressable graphics,

NONIMPACT PRINTERS
Impact printers operate on the same general principle as ordinary typewriters. Be-
cause of the speed and special technological demands on a computer-driven printer, new

o Wy A
L o A
v v Os TN,

- = : . r

Il <is .‘1.\."-‘ .

’ " | Y : - s :
v (e (AT v Ty A SAA N I (rAM A atid) vl.\‘. Wil

FIG. 7. Richard Helmick. Glades, 1983 screenprint. Apple lI+ with Epson MX-80 dot matrix printer,
© 1983 Richard Helmick.

printing technologies have developed. Many of these technologies do not use a mechani-
cal impact to produce an image. Among these nonimpact technologies are laser, electro-
static, thermal, and ink-jet printing. Some of these techniques are still in their infancy and,
in many cases, are very expensive. But for low-cost graphics applications, thermal and par-
ticularly ink-jet printers are of interest.

Thermal printers are very common in personal computer systems because of their
low cost and low noise levels. They operate by selectively heating small semiconductor
elements that are arrayed across the carriage. A stepper motor moves heat-sensitive paper
across these elements. After several steps of the motor, a dot matrix pattern is formed on
the current line of printing. Some thermal printers have graphics capabilities. The main
disadvantage for graphics applications is the fact that most thermal paper is unstable. After
several years of even very careful storage, the paper will tend to discolor and the image will
fade.

Ink-jet printers operate on the principle of shooting very small droplets of ink at the
paper surface. The print head does not touch the paper surface. The original ink-jet tech-
nology used a continuous stream of ink droplets that were electrostatically directed. The
ink droplets that were not used for printing were recycled. A more recent and lower-cost
technology uses a single drop of ink that is shot at the paper when commanded by the
printer. This is known as drop-on-demand ink-jet printing.

The ink droplets correspond to the individual dots that the dot matrix printer uses.
Thus the final image on paper, whether it be an alphanumeric character or some type of
graphic image, is formed in the same manner as by the dot matrix printer. The ink drops are
propelled from the print head with several different types of mechanisms, Piezoelectric
impulses are used to fire ink droplets in some systems, while others use miniature pumps.

COLOR PRINTING

Most of the new ink-jet printers have multiple-color capacity. Some systems use as
few as three colors in the print head while others may use eight or more individual ink
colors. The inks are translucent and dry quickly. This means that color images of great
complexity can be generated on paper. Color mixtures are possible by combining and
overlaying the dot patterns of several different colors. For instance, a green area might be

31

WHAT MEETS THE EYE: DISPEAYING COMPUTER GRAPHICS

represented by combining a series of yellow and blue dots, This process is calling dithering.
Not only is it used in ink-jet printing but it is also frequently used in high-resolution dis-
plays to create a wide variety of different colors from a limited range of available colors.

Because of color printing and the bit-mapped graphics of many ink-jet printers,
these machines may have potential for creating artistic graphics. Conventional paper can
be used in these machines, although some of the manufacturers recommend using spe-
cially coated paper. The ink-jet printers also have the virtues of being roughly comparable
in cost to impact dot matrix printers and of being quiet in operation

Color printing has also become available in some of the impact dot matrix printers.
These printers utilize the same type of print head as a monochrome dot matrix printer, but
use a multicolored ribbon that can be struck with multiple passes of the print head. Dith-
ering is also used with impact color printers to produce additional colors.

A potential problem with both ink-jet and impact color printers is that the colors
may not be permanent and lightfast. Often the special technological requirements of
creating, say, an ink that can be used in a piezo-ink-jet gun may not also be compatible
with the standards of lightfastness. The cniteria of permanence for commercial purposes

FIG. 8. Ink-jet printer with 120 dots-per-inch resolution and a 480 x 360 color graphics terminal,
with both graphics and alphanumeric capability. Photograph courtesy of Tektronix, Inc.

32

DRAWING WITH COMPUTERS

PLOTTERS

may be quite different from the criteria of the artist. Unfortunately, the artist may have to
rely on his or her own test of lightfastness when it comes to many of the exotic materials
used in computers. A very easy and practical test is simply to expose a small swatch of
whatever type of material is in question in a south-facing location. Place or tape the swatch
to the inside of a window. Keep an identical swatch of the material in a dark place. After a
few months, compare the two pieces. If the exposed sample has faded substantially, the
color is probably not suitably lightfast. This can hardly be said to be a scientific test, but it is
certainly easy enough to make, and will often reveal relative impermanence.

THE MOST VENERABLE DEVICE that has been used with computers to produce graphics
output is the plotter. Plotters have been used for over twenty-five years. They are essen-
tially automatic drawing machines that are controlled by a computer. The drawing surface
of the plotter is divided into series of small divisions. The plotter can move to these loca-
tions along the horizontal and vertical axes. Typically, these divisions or units may be 200 or
more steps per inch. Thus, an 117 X 17" plotter with an actual drawing surface of 10” X 15”
would have a resolution of 2000 units by 3000 units. The pen carriage of the plotter is physi-
cally capable of moving to each one of these points. Upon command the pen, or pens, can
be moved up and down. When the pen is lowered to the surface and moved, it leaves a
trace on the paper. Like the other types of graphics output devices we have discussed, the
plotter pen is incapable of making a true curved or diagonal line. The plotter must approx-
imate such lines with an appropriate series of horizontal and vertical steps. If the plotter is
sufficiently accurate, these steps—or stair steps—cannot be perceived.

Plotters are differentiated by the manner in which paper or other media are held by
the machine. Flatbed plotters hold a sheet of paper upon a horizontal bed. The paper is not
moved. The pen carriage of the flatbed plotter is moved to various locations on the paper.
Generally speaking, flatbed plotters are more accurate than other types. They also have the
advantage of allowing the user to view the entire plot at one time. But because of me-
chanical considerations, they tend to be the most expensive.

Drum plotters have a drum—or cylinder—on which is affixed the drawing medium.
The pen carriage moves back and forth along one axis, usually the y axis, and the paper
moves back and forth along the other axis. A recent variant of the drum plotter does not
use a drum. Instead the paper is gripped between two rollers. One of the rollers—the grit
wheel—is coated with a rough material. The other roller is smooth. When the paper passes
through these rollers, the grit produces a series of very small impressions in the paper. As
the paper passes back and forth between the grit wheel and roller, it settles into the pre-
viously formed impressions, thus maintaining accurate registration of the paper. The manu-
facturers of these types of plotters claim that this design permits the use of smaller and less
expensive motors and control electronics.

FIG. 9. Robert Mallary. 1983 two-color plotter drawing. SCRIBBLE
software running on a CDC CYBER, with a four-pen CalComp
drum plotter. © 1983 Robert Mallary,

FIG. 10. Gerald Hushlak. Mechanical Aesthetic for the Workers, or, A Record of Development of
Surface, 1982 plotter drawing on paper. © 1982 Gerald Hushlak.

FIG. 11. Drum-type plotter, using a grit wheel paper
transport. This high-speed, high-resolution plotter can
accommodate paper 24 inches in width. Photograph
courtesy of Hewlett-Packard Co.

FIG. 13. An open flatbed plotter that can be freely
moved about the drawing surface. Photograph courtesy
of Alpha Merics Corp.

FIG. 14. Small multipen flatbed plotter. Photograph
courtesy of IBM Instruments, Inc.

FIG. 12. A 60" x 120" flatbed plotter. Photograph
courtesy of Gerber Scientific, Inc.

35

WHAT MEETS THE EYE: DISPLAYING COMPUTER GRAPHICS

There are a variety of other types of plotters, but they differ in the means by which a
pen trace is left on the paper. Electrostatic plotters operate mechanically in much the same
fashion as a drum plotter but use the electrostatic deposition of a pigment to produce the
image. Most electrostatic plotters are large and expensive. They are generally monochro-
matic, although recent high-resolution four-color models have been introduced. Photo-
plotters plot with a light head that exposes photographic film. Obviously, photoplotters
operate in a dark environment. Large flatbed plotters have been used in the garment indus-
try to cut pieces of garments. Multiple layers of fabric are placed on the bed of the plotter.
Lasers or high-speed reciprocating miniature saws cut through the fabric. While some of
these plotter applications are beyond our present interests, they illustrate the versatility of
the plotter.

PLOTTER OPERATION

A small inexpensive flatbed plotter is controlled by two stepper motors. Stepper
motors are designed especially for use in computer applications. A digital pulse is sent to
the motor. The windings of the motor are so constructed that the motor shaft turns a pre-
cisely determined amount. These discrete steps—or indexing—that the motor makes are
controlled by the inherent design of the windings. Thus, very accurate rotational motion is
produced.

The stepper motors are connected to a pulley and cable system that moves the pen
carriage back and forth along the horizontal and vertical axes. The cabling along each axis
forms a continuous loop, so that, as the motor moves, the pen will be pulled in the proper
direction. The motion of the pen itself—up or down—is controlled by some type of sole-
noid coil.

Because of the digital signals sent to the stepper motor, theoretically, the pen should
always be able to move very precisely to any given position. In practice, of course, the me-
chanical aspects of the machine will limit the true accuracy. Imperfection of mechanical
components, as well as wear and tear, will decrease the accuracy of the plotter.

The motion of these mechanical components, often in simultaneously horizontal
and vertical directions, produces vibrations, When the pen carriage moves at certain
angles, or vectors, these vibrations may become fairly large. If the plotter is not robustly
constructed, the vibrations will degrade line quality. More expensive plotters attempt to
reduce these problems by using stoutly constructed components. In some cases, vibration-
absorbing devices, called viscous dampers, are installed on motors.

The artist may well ask at this point why such mechanical precision is necessary.
Such precision may be desirable for making engineering drawings, but it may not seem im-
portant in making artistic drawings. But consider the example of drawing a square or a cir-
cle. The pen makes an excursion and then should return to the point where it started—to
close the circle or square. The pen carriage may make hundreds or thousands of steps as it
moves. While the digital commands to the stepper motors should move the pen carriage
back to its starting position, small incremental mechanical errors caused by the motors and

36

DRAWING WITH COMPUTERS

FIG. 15. Mark Wilson. Skew BB12, 1984 plotter drawing on paper, 20" x 38", IBM PC and a
Tektronix 4663 plotter. © 1984 Mark Wilson.

pulley system may cause the pen to end up in a position that is not coincident with its
starting position. The measure of how accurately the pen can repeat an earlier position
after making a series of moves is called repeatability.

The resolution of a plotter is also an important measure of its accuracy and pre-
cision. The resolution means how small a step the pen can make. Like the electron beam in
a video monitor or the solenoid hammer in a dot matrix printer, the pen is capable of mov-
ing to a discrete number of points on the plotter surface. In our earlier example of a plotter
with a resolution of 200 steps per inch and a plotting surface of 2000 by 3000, the pen
would be capable of moving to any one of 6 million discrete points. Sometimes resolution
is further defined by the concept of addressable and mechanical resolution. Addressable
resolution means the limits to which the pen can be moved under software control, while
mechanical resolution means the actual resolution of which the motors are capable. In
other words, it may take ten digital pulses to cause the stepper motor to move one step.
Thus, the plotter was commanded to move one step or unit, and in order to accomplish
that one step the motor actually had to move ten smaller steps. In this case, the mechanical
resolution is superior to the addressable resolution. Naturally, this is a desirable feature,
but it also makes the machine more expensive.

Speed is also an important factor in measuring the quality of a plotter. Two inches
per second is about the minimum, while some plotters are capable of moving at over 20
inches per second. Bear in mind that even 20 inches per second is only a little more than 1
mile per hour. But a complex plot may contain literally miles of lines, and when you add
the time spent moving with the pen up to a new position, such a plot may take many hours
to draw. While high pen speeds are generally desirable, many types of pens are not capable
of feeding ink to the pen point at such speeds. For instance, a technical pen may not be
able to produce a good quality line at much more than 10 inches per second.

PLOTTER FIRMWARE, PENS, INKS

The typical small plotter contains a microprocessor with ROM and RAM memory.
This small microcomputer within the plotter controls the communication with the host—
the computer that is controlling the plotter—as well as providing all the necessary control
signals to drive the pen carriage. The plotter's ROM contains the necessary instructions to

37
WHAT MEETS THE EYE; DISPLAYING COMPUTER GRAPHICS

generate vectors, and any other special graphics capabilities the plotter may have. Typical
of these capabilities would be the drawing of circles and alphanumeric characters. ROM
and its associated instructions are sometimes known as firmware.

Despite the exquisite complexity of the plotter, software, and firmware, the bottom
line is that an ink pen is mechanically drawing a line on paper. In some sense, the pen, ink,
and paper are the least important—and the most important—part of making a picture. The
trail of ink is only a record of where the pen passed, and yet this trail is the absolute essence
of the picture.

1 —
\
T 2
: oy Y P
T
- =
-~ '-!
1 X e o) iy
> a!
e
5y 4
< b l \
\ oA
) \ ¥

PaloB =t D
' RS S EAL
2 ra ..‘\\\\’;"’) :"

FIG. 16. Colette and Charles Bangert. Grass series. 1983 plotter drawing on paper, 11" x 17", IBM
PC and a Hewlett-Packard plotter. © 1983 Colette and Charles Bangert.

38

DRAWING WITH COMPUTERS

FIG. 17. Charles and Colette Bangert. Circe series. 1984 plotter drawing on paper, 11”7 x 17", IBM
PC and a Hewlett-Packard plotter. © 1984 Colette and Charles Bangert.

There is a wide diversity of papers and pens available for use with plotters but not all
are suitable for artistic purposes. Fiber-tip pens are probably the most commonly used.
They produce good results in a plotter, even at relatively high plotting speeds. Yet they
really are not suitable for any type of work where longevity is important. Most fiber-tip pen
inks simply are not permanent.

Ball-point pens of various types are available for plotter use. Some use a water-
soluble ink similar to that used with fiber-tip pens, and others use an oil-base ink. Unlike
fiber-tip pens, ball-points produce very consistent line widths during their life. But, once
again, their inks are of questionable longevity and should be tested for permanence.

The best type of pen for plotter use, from the standpoint of the artist, is the technical
pen. Technical pens have been in use for many years by draftsmen, engineers, and archi-
tects. They have refillable wet-ink cartridges. The pen points are hollow metal tubes with a
wire plunger inside the tubing. Materials of varying hardness are used for the tip. Stainless
steel is the standard tube material, but jewel and tungsten carbide are used for more dura-
ble pens. Because of the special demands of plotter use, tungsten carbide tips are the most
desirable. As the pen will literally travel many miles over the paper, as well as being con-
stantly raised and lowered onto its surface, the tungsten carbide tip will provide the best
service. Technical pens come in a variety of line widths, from about 0.01” to 0.05". They
will maintain very consistent line widths throughout their life.

Black india ink is the standard ink used in plotter pens. It is pigmented with finely
divided carbon particles and possesses excellent opacity and permanence. Many colared
inks are also available, Several manufacturers produce pigmented inks for technical pens.
These pigmented inks have superior permanence and are excellent for use in plotter pens,
They are also intermixable and compatible, which means that a very large range of colors

39

WHAT MEETS THE EYE: DISPLAYING COMPUTER GRAPHICS

i

il

can be mixed from the standard colors. Compatibility between different manufacturers’
products may not exist, causing problems with ink clogging in pens.

PAPER

Vast reams of paper are consumed by printers and plotters. Most of this paper is
quite adequate for its intended purpose and for artists beginning to experiment with com-
puter graphics. The primary problem is one of longevity. We are all familiar with the rapid
degradation of newsprint. Ordinary white bond paper will undergo a similar degradation,
but on a time scale of years rather than a period of days or weeks as with newsprint. Such
paper is usually made from wood chips using the sulphite process. The paper manufactur-
ing process leaves a residue of acidity in the paper, which eventually causes self-destruc-
tion. Higher quality paper is manufactured from cotton fiber or reprocessed cotton rags. It
is known as rag paper and will frequently be described as having a certain percentage of
rag content. Obviously, 100 percent rag paper is the highest quality.

It is easy to find 100 percent rag art papers, but obtaining 100 percent rag paper for
use with a computer is another matter. For instance, it may be very difficult to find such
paper with sprocket holes for use with printers or drum plotters, Flatbed plotters and drum
plotters that do not use sprockets to move the paper allow a choice from a large selection
of conventional art papers. The main limitation on their use may be the amount of clear-
ance under the pen carriage. Many art papers, such as a heavy watercolor paper, may be
thick enough to prevent proper operation of the pen. When the pen goes down, it may dig
into the paper and be unable to move. Some of the other problems encountered may in-
clude clogging of the pen because of fiber accumulation in its tip, and either excessive ink
absorption or inadequate ink absorption by the paper. Papers have a great variety of sur-
face textures. They range from very smooth to very rough, with every gradation between.
For my personal use, | have found that relatively smooth paper, with a surface akin to hot-
press paper, produces good results with technical pens.

Plotters in commercial and industrial applications use other types of media such as
transparent film and polyester drafting film. Drafting film is semiopaque and is coated to
accept ink. The ink tends to lie on the surface of the film rather than being absorbed into
fibers as with paper. Depending on its chemical composition, transparent film varies in per-
manence, Polyester drafting film has excellent durability and permanence and is generally
considered to be permanent, although the quality of line is very different from what is ob-
tainable on paper.

40

DRAWING WITH COMPUTERS

3. UNDERSTANDING GRAPHICS SOFTWARE

IN SOME WAY a computer without software is a bit like a canvas and palette of colors
without an artist. Forgive this obvious simile, but there is, nonetheless, a great deal of truth
in it. The computer hardware, even in a very simple microcomputer, is capable of prodi-
gious tasks; but it remains absolutely mute and inert unless there is software to control and
direct it.

If you are a business person and want to make a chart of sales for the last three years,
lovely software is available for this purpose. If you are an engineer and want to lay out a
printed circuit board, finding the software should be no problem. If you are an artist and
you want to make pictures with your computer, things become somewhat more difficult.
There is some software available, most of it aimed at creating pictures on the color monitor.
These software packages for drawing on the screen are known as paint programs or paint
systems. Some of these are very good. Most operate on the principle of mimicking the
conventional artistic processes of drawing and painting. In other words, the cursor on the
screen is controlled through the keyboard or some other input device, such as a digitizer
pad or joystick. Images are drawn on the screen and can then be manipulated in a variety
of ways.

Paint programs are developing rapidly. We should see an increase in both the quan-
tity and quality of these programs for microcomputers. The ultimate problem with paint
programs is that while they can very cleverly manipulate images, they are incapable of
generating images on their own. The artistic vision in the twentieth century has produced
an extraordinary variety and diversity—from Malevich’s all-white paintings to the photo-
realist paintings of Richard Estes. Between these poles lies a seemingly endless proliferation
of styles. In fact, the twentieth century may be viewed as a period in which stylistic diver-
sity is the norm. The wild medley of visual styles from which the artist may draw is not nec-
essarily available from existing computer software. So, to fully exploit this new medium,
the artist must learn as much as possible about its potential.

While paint programs may serve some needs, at least some knowledge about pro-
gramming is necessary. Artistic creation is not at all impossible if you do not write your own
programs. But even a limited amount of programming experience will help you understand
both the limitations and the potentials of computer graphics. If you have never pro-
grammed a computer, the thought of writing software may seem onerous. Yet the possibili-
ties greatly outweigh the drawbacks. In fact, necessity may force you to become a
programmer, for at this point there is simply a limited amount of software available for the
artist, and many programs do not support hard-copy devices, such as printers or plotters.

41

UNDERSTANDING GRAPHICS SOFTWARL

- “ o ‘v‘
B :s' '.‘f:in‘x_.‘ R s
—-A‘: L‘:_h._._x_“u e

T

FIG. 1. Aaron Marcus. Urbane Nova, 1972 color lithograph converted in 1984, DEC PDP-10 and a
Mergenthaler Linofilm Quick Phototypesetter. © 1972, 1984 Aaron Marcus.

FIG. 2. Copper Giloth. Wisconsin series, 1983 plotter drawing on paper. UV-1 Zgrass system, video
camera, video digitizer, and a Hewlett-Packard plotter. © 1983 Copper Giloth.

Most importantly, programming represents a positive opportunity. Programming
offers individualistic twentieth-century visual artists the means to expand their own artistic
expression. The nature of computer graphics provides a fundamentally different way of
making pictures. If the artist is curious about exploring this medium, programming is the
means to do so.

Programming is simple. Since BASIC is available in almost all low-cost microcom-
puters, we will proceed with a series of simple BASIC programs that can be used with a
plotter or adapted for a video display. While BASIC may not be the choice of an advanced
programmer, it is a universal microcomputer language, it usually has graphics primitives,
and it comes free with your microcomputer

BASIC DIALECTS

MOST MICROCOMPUTERS BASICs are similar and roughly compatible with each other;
but there are occasionally differences that will have important programming conse-
quences. The Microsoft BASIC that is used in the IBM Personal Computer and PCjr was
utilized in all of the program listings that will follow. These listings may require minor
modifications to allow them 1o run on other microcomputers. However, the primary diffi-
culty in programming compatibility is interfacing with the graphics hardware of the indi-
vidual types of microcomputers. Each specific machine will have its own command to draw
a line on the screen, There are no graphics standards among microcomputers. The com-

43
UNDERSTANDING GRAPHICS SOFTWARE

puter graphics industry has proposed that standards be adopted so that all such com-
mands, say for the drawing of a line from one point to another, would be uniform. Progress
is being made toward the adoption of such standards, but in the meantime it is still neces-
sary to convert and interpolate graphics commands between one machine and another. For
instance, the Apple |l will put a point on the screen with the command PLOT X,Y. A similar
command for the IBM PC would be PSET X,Y.

High-level languages, like BASIC, FORTRAN, and Pascal, have no intrinsic graphics
commands or primitives associated with them. The graphics primitives are added features
of the language. These primitives are directed toward the specific graphics display hard-
ware in each microcomputer. Obviously, all high-level languages have some sort of
method of outputting ASCII characters to the screen, But very few except the resident

. S - -

FIG. 3. Laurence M. Gartel. Forever Television, 1981 screen photograph. Digital Effects Video
Palette paint system. @ 1981 Laurence Gartel.

4
DRAWING WITH COMPUTERS

BASIC have any graphics commands. One remedy for this problem is to write your own
graphics primitives that will access the graphics display hardware in your computer. This
requires a thorough knowledge of a low-level language, like assembly or machine lan-
guage. Needless to say, such an approach is not for the casual user. In some cases, profes-
sional programmers have written routines and packages of graphics primitives, which can
be obtained for certain languages and computers. It might be useful to point out that in the
world of larger computers—such as minicomputers and mainframes—the question of
graphics primitives is usually not a problem for the user. Typically such systems will use
high-resolution terminals that have graphics firmware.

LOGO

AN IMPORTANT EXCEPTION to the paucity of graphics primitives built into high-level mi-
crocomputer languages is LOGO. Developed at the Massachusetts Institute of Technology
in the 1970s, LOGO is an interpreted language. LOGO has its roots in LISP, or List Pro-
cessing Language, which has been closely associated with artificial intelligence research.
LOGO was specifically developed as a language that computer novices could use to learn
programming. It is easy to learn and it is also very different from BASIC. Most important,
LOGO includes a set of graphics primitives. LOGO’s approach to graphics is rather uncon-
ventional. The central feature of the graphics operation is the use of a “smart” cursor,
called a turtle. The turtle draws lines on the display. The turtle always knows exactly where
itis and in what direction it is pointing. Thus, the turtle can be moved by merely directing it
forward, backward, left, or right. Turns are specified by angular quantities, This conception
of the graphic space is in marked contrast to that underlying the rest of computer graphics,
which use the Cartesian coordinate system. We will discuss this coordinate system soon,
but the LOGO turtle does present a very interesting and powerful alternative for the artist
interested in computer graphics.

Another advantage of LOGO is that it is rapidly becoming available for almost all
microcomputer systems. It is simple to learn, usually inexpensive, and, some say, has the
potential to rival the universality of BASIC in the microcomputer world. A disadvantage
with some of the current implementations of LOGO is that not all have the ability to con-
trol output to an external device, such as a plotter.

COORDINATE SYSTEMS: HOW TO DEFINE SPACE WITH NUMBERS
THE CARTESIAN COORDINATE SYSTEM

René Descartes (1596-1650), a French philosopher and mathematician, created a
method which united elements of geometry and algebra. His work, in La Géométrie (1637),

47

UNDERSTANDING GRAPHICS SOFTWARIE

(100,100), that point will become our active point, or pen position. In relative mode, the
same box would have coordinates of A (0,0), B (0,100), C (100,0), D (0,-100). (See Fig. 6.)
Note that each new set of coordinates is always relative to the last point.

WORLD COORDINATES

Another type of coordinate system that is frequently encountered in discussions of
computer graphics is world coordinates. Up to this point, we have been considering the
actual device or physical coordinates of whatever type of machine we happen to be using.
World coordinates refer to a coordinate system unrelated to the graphics display. The units
of such a world system might be feet or meters, seconds or years. In many cases the soft-
ware or firmware of a graphics display device will allow the user to specify the world units
of the display. These world units could be different from the device units. The part of the
world coordinate system that can be seen on our actual device is called the window. Ob-
viously, the world coordinates must be converted into device coordinates by software or
firmware.

|
2

B (2,103> C cC1ee,a>

A 2,0) D ¢8,-10@)

— 1 142 162 \09 Q209 220 240

FIG. 6. Relative Coordinates

46

DRAWING WITH COMPUTERS

Fig. 4 shows four points plotted in the same respective positions in each of the four
quadrants; A = 100, 100 (100 positive x axis units, 100 positive y axis units); B = 100, = 100;
C=—100, =100; and D = =100, 100.

ABSOLUTE AND RELATIVE

Frequently, graphics devices will have two modes of specifying the method of nam-
ing the coordinates. These two modes are absolute and relative. Absolute mode refers to
the physical coordinate system of the device. In other words, if the device locates the origin
(0,0) at the lower left corner, as in Fig. 5, we could specify the coordinate pairs of the cor-
ners of a box by these numbers: A (100,100), B (100,200), C (200,200), and D (200,100).

Relative mode means that coordinate pairs are specified relative to the location of
the pen—in the case of a plotter—or to the last point referenced—in the case of a video
display. Relative mode simply means that wherever the pen or active point is, that point, in
effect, becomes the origin (0,0). Thus, any new point will be in reference to that point. In
the previous example of a box with its lower left corner at the absolute coordinates of

B C1ee, 200> C (209, 220>

A Ci1@e, 102> D (288, |ead

FIG. 5. Absolute Coordinates

47

UNDERSTANDING GRAPHICS SOFTWARIE

(100,100), that point will become our active point, or pen position. In relative mode, the
same box would have coordinates of A (0,0), B (0,100), C (100,0), D (0,—100). (See Fig. 6.)
Note that each new set of coordinates is always relative to the last point.

WORLD COORDINATES

Another type of coordinate system that is frequently encountered in discussions of
computer graphics is world coordinates. Up to this point, we have been considering the
actual device or physical coordinates of whatever type of machine we happen to be using.
World coordinates refer to a coordinate system unrelated to the graphics display. The units
of such a world system might be feet or meters, seconds or years. In many cases the soft-
ware or firmware of a graphics display device will allow the user to specify the world units
of the display. These world units could be different from the device units. The part of the
world coordinate system that can be seen on our actual device is called the window, Ob-
viously, the world coordinates must be converted into device coordinates by software or
firmware.

2
o
___________ B Cg,1@ed> C <1ee,®
Jes 1
l16@
{14
J2e
,ug_a__ __________ |A ce.@ D ¢8,-188)

|
|
I
!
I
|
1
1
|
|
|
1
—— R 3 288220 249

FIG. 6. Relative Coordinates

48

DRAWING WITH COMPUTERS

oF
)] i
2
il F F a2 wf] am
A 1 1
WORLD COORDINATESCPEET) > 1 » »
WORLD WINDOW

] (H]
| (]

L 4 e i
SCREEN mxlﬂ““
VIEWPORT SEVERAL VIEWPORTS

FIG. 7. World Units, Device Units, Windows, Viewports

An extension of the idea of windows on the world coordinates is the viewport. The
viewport permits only a section of the window to actually be displayed on our device. The
segments of the lines or alphanumeric characters are not displayed outside of the viewport.
They are said to be clipped.

VECTOR GENERATION: DRAWING LINES

EVEN VERY SMALL CHILDREN can easily connect two dots together with a line. It is a dif-
ferent matter with a computer. To draw a line on a screen, or draw a line with a plotter, is
not a trivial action. In most cases, the end user of computer graphics equipment does not
have to worry about the drawing of these lines, or vectors. The hardware or firmware in the
display device will transparently construct the line. Because this fundamental procedure is
at the heart of any graphics operation, it seems appropriate that we momentarily consider
what is occurring.

We select a starting point of X1 and Y1, and an ending point of X2 and Y2. The BASIC
listing below shows these inputs to the Vector Generation program in lines 40 through 70.
Line 90 then finds the ratio of sides of a triangle formed by the vector—the hypotenuse of
the triangle—and two sides of the right triangle—the distance of the X and Y legs of the
right triangle. This ratio is called the Y increment, and the variable name is YINCR. A FOR
... NEXT loop then plots a point on every pixel along the dimension between the old X and

49
UNDERSTANDING GRAPHICS SOFTWARE

new X position. As the loop moves along, the Y distance is being incremented with the
value of the YINCR. While this listing is not necessarily the most efficient way of drawing a
line, it does illustrate, in a simple way, the issues involved in drawing vectors. Happily, al-
most all computer graphics devices have such vector capabilities, so when we want to draw
a line, the machinery does the calculating for us.

10 ' Vector generator

20 SCREEN 2

30 CLS

40 INPUT " X1 coordinate'" ;X1
50 INPUT " Y1 coordinate";Y1
60 INPUT " X2 coordinate";X2
70 INPUT " Y2 coordinate";Y2
80 CLS

90 YINCR=(Y2-Y1)/(X2-X1)

100 FOR I=X1 TO X2

110 YYINCR=YYINCR+YINCR
120 PSET(I,Y1+YYINCR)
130 NEXT I

STANDARD GRAPHICS COMMANDS

THE STANDARD COMMANDS used to draw lines are all similar but they all have slight
variations in their syntax. Essentially they all boil down to two simple ideas: move, with the
pen up, to a specified place; and move, with the pen down, to a specified place. Frequently,
video displays will use software commands that will draw a line from one point to another
in a single command. But most plotters use some sort of pen up, pen down command
structure. Thus a typical BASIC software command to a plotter would consist of:

PRINT #1,MOVE$;0LD X COORDINATE VARIABLE;OLD Y COORDINATE VARIABLE
PRINT #1,DRAW$;NEW X COORDINATE VARIABLE;NEW Y COORDINATE VARIABLE

Naturally, instead of variables we could have constants, but for most purposes variables
will be used. Indeed, good programming practice makes the use of variables mandatory. In
the above example, the device would move, with the pen up, to the starting position de-
noted with the old x and y coordinate variables, and then move to the finishing position
denoted with the new x and y coordinate variables.

50

DRAWING WITH COMPUTERS

TURNING A GRAPHICS DISPLAY DEVICE ON AND OFF

Many graphics devices require a software command to turn them on or enable them
to react to commands sent by the host computer. Often this will be several ASCI| charac-
ters that must be sent to the device. A similar situation exists with the graphics displays of
many microcomputers, Often it is necessary to send a software command that puts the
machine in a graphics mode. If the device has a command to turn it on, there will usually
be a corresponding command to turn it off. While remembering to use this software com-
mand to enable a device to react is a trivial matter, forgetting it can nonetheless cause a
novice much frustration when attempting to write software.

OTHER GRAPHICS COMMANDS

Depending on the amount of “intelligence” built into your display device, you may
be able to send commands that will greatly expedite drawing of forms and symbols. One of
the most common examples is drawing circles. Writing software necessary to draw a circle,
although not difficult, can be cumbersome in terms of computation time on a microcom-
puter. Thus, if your plotter has a command to draw a circle, it will greatly speed up the
drawing process. Modern low-cost plotters frequently have an impressive set of commands
available. These would include drawing circles, arcs, and symbols such as boxes, triangles,
and the like. Most plotters also have a ASCII character set that will allow them to print out
characters. Usually, the size of these characters can be set from software commands. In-
stead of generating a pattern of pixels on the screen as does a video character generator, a
ROM in the plotter actually contains a series of vectors that describe a letter. The plotter
then plots those vectors to draw the ASCII character. Some of the other commands avail-
able may give the plotter the ability to draw dotted and dashed lines, to select viewports,
and to slant and rotate the ASCII character set.

Needless to say, the types of graphics manipulations on a video monitor are some-
what different, but a “smart” display will have a variety of methods to enhance the creation
of pictures. Probably the most obvious difference would be in a color display, where a
number of different colors are available. Unlike plotters, a video color display may have a
fill command that fills an area with a specified color. This is extremely useful. Circle and arc
commands are sometimes available, and of course, an ASCII character set is almost univer-
sally standard in any type of video display.

PLOTTER LANGUAGE FORMATS

As an example of the format of commands to plotters, the listing below shows how a
BASIC language program would send the plotter a command to move, with the pen up, to
an x and y coordinate of 100 units, and then move, with the pen down, to an x and y coor-
dinate of 200 units. This would be the command sequence to draw a diagonal line. This
listing is then repeated incorporating the commands used by several of the major plotter
manufacturers, to give the reader an idea of the variations in command structure.

51
UNDERSTANDING GRAPHICS SOFTWARE

Our example will assume that we have two sets of variables, the STARTX and
STARTY coordinates, and the ENDX and ENDY coordinates.

10 STARTX=100
20 STARTY=100
30 ENDX=200
40 ENDY=200

Hewlett-Packard Graphics Language (HP-GL):

100 PRINT #1,"PUPA";STARTX;";;STARTY
110 PRINT #1,"PDPA";ENDX;";";ENDY

Houston Instruments (DM/PL):

100 PRINT #1,"U";STARTX;STARTY
110 PRINT #1,"D";ENDX;ENDY

Tektronix 4662 and 4663 Plotter Language:

100 PRINT #1,"!AX"+STR$(STARTX)+STR$(STARTY);
110 PRINT #1,"!AY"+STR$ (ENDX)+STR$(ENDY) ;

IBM XY749 and XY750 Plotters:

100 PRINT #1,STR$ (STARTX)+STR$(STARTY)+"HK"
110 PRINT #1,STR$(ENDX)+STR$ (ENDY)+"IK"

These examples reveal the essential similarity, but, at the same time, the slight di-
vergence of each command from the others. Once you become familiar with whatever
software system you might be using, the command format becomes a trivial problem. But
for the first-time user, the command format can be frustrating. In most cases, the actual
command codes sent to the plotter are ASCII characters, but the numeric or variable values
can be represented by ASCII characters or by actual numeric or variable values. Further
complicating the issue is the format of the numbers. Some machines will accept only in-
tegers, in which case coordinate variables must be defined as integers in the program. Vari-

52

DRAWING WITH COMPUTERS

ous dialects of BASIC also use different formats and delimiters in their respective PRINT
statements. A delimiter is a character that is used to separate different values. Commonly,
the space character (ASCII 32), commas, and semicolons are used as delimiters. In some
cases, it may be necessary to send a carriage return control character (ASCII 13) at the end
of a line.

COMMUNICATIONS: THE MACHINES SPEAK TO ONE ANOTHER

COMPUTER COMMUNICATIONS is a very large, complex, and important subject. In order
to have a microcomputer transfer information to a peripheral device, such as a printer or
plotter, you must establish a line of communication. Usually this is not an insurmountable
problem, but at the same time, it can be frustrating and perplexing.

There are two major and several minor types of interfaces available for microcom-
puters, The most common are the serial and parallel interfaces. The serial interface is a
standard that is defined by the Electronic Industries Association (EIA) and is officially
known as the EIA RS-232C interface, or more simply RS-232. Occasionally, the parallel in-
teriace will be described as a “Centronics” printer port. Centronics is a printer manufac-
turer whose interface became very widely used for dot matrix printers. Both interfaces use a
similar connector, known as a 25-pin DB-25. This connector is supplied in a positive and
negative form, known unabashedly as male and female. The parallel interface is very
widely available for printers, while the serial interface is more commonly used with letter
quality printers, plotters, terminals, and modems.

A sophisticated variation of the parallel interface sometimes, although infrequently,
seen on microcomputers is the General Purpose Interface Bus, or GPIB for short. It is also
known as the IEEE-488 interface. This communications interface was originally developed
by the Hewlett-Packard company for use with test instruments and is currently referred to
as the Hewlett-Packard Interface Bus, or HPIB, by that firm,

Parallel interfaces are generally very easy to use, and in many cases, the operation of
the interface is transparent to the user. In other words, the user does not have to set any
parameters or worry about overflows of data at either end of the communication link. Un-
fortunately, the serial interface tends to be somewhat more complex. It is also more wide-
spread, It would be useful, therefare, to consider some of the details necessary for the
proper operation of serial communications.

EIA RS-232C

The serial interface, EIA RS-232C, has a variety of parameters that can be set through
software and, sometimes, hardware. These parameters include the speed of transmission,
or baud rate, and the digital nature of the characters that are interchanged between de-
vices,

The character can be specified as to its length, whether or not parity will be checked,
and the number of stop bits that are sent. The length of the character is generally seven or
eight bits. Parity checking is a means of verifying the binary message that is transmitted.
The stop bits signal the end of the transmission of one character. These settings must match
both the computer and the peripheral device.

The baud rate is important because it represents the number of bits per second that
are transmitted in the communication. A baud rate of 300, or 300 bits per second, is the
standard rate of exchange for personal computer modems. If ASCII characters are being
sent in the format of seven data bits and one stop bit, then approximately thirty-seven
characters can be transmitted every second (300/(7 + 1) = 37.5). Obviously, higher baud
rates are desirable, but, for a variety of reasons, they are not always practical. High-speed
modems are more expensive, for instance; and many types of peripheral devices are simply
not capable of processing the data that is received. This is particularly true of plotters and
printers, which are physically slow machines that cannot accommodate the data as fast as it
is sent.

53

UNDERSTANDING GRAPHICS SOFTWARE

THE PLODDING PLOTTER

As an example of the communications problems a plotter will face, let us do a sim-
ple calculation. Suppose we want to make a solid square of color. We can do this by mak-
ing a series of parallel lines. We will hatch the square with a pen that has a line width of
about 1/64 inch (about 0.015 inch). To make the lines just touch one another and fill the
area, we would need sixty-four parallel lines to make a 1-inch square. The computer must
calculate the coordinate pairs for the start and end points. Thus, we have 64 lines with a
pair of coordinates at the beginning and end, making a total of 128 calculations—64 X (1
starting coordinate + 1 end coordinate) = 128. If we make horizontal lines it is not neces-
sary to recalculate the starting and ending x coordinates, If we perform the calculations
with addition or multiplication, which are faster than division, using a BASIC interpreter,
we get the following results: a Texas Instruments 99/4—a slow machine—will perform the
necessary incrementing of the y axis points in roughly 2 to 4 seconds, depending on the
algorithm used. Plotter pens can move anywhere from 2 inches per second to more than 20
inches per second. If we use a mean speed of 10 inches per second for the pen speed, it
would take at a minimum of 6.4 seconds to fill the area. In practice, it will take longer be-
cause the pen may have to lift and then lower again to plot each new y axis step. Ac-
celerating and decelerating the pen also adds to the time. Thus, in this example, even at the
worst case with a slow computer, the data will arrive at the plotter about 50 percent faster
than it can be plotted on paper.

Printers and plotters usually have some internal memory allotted to solve this prob-
lem of data reception. It is called the buffer. The buffer stores data as it is received and then
relays it in the order in which it was received. This is known as “first in, first out,” or FIFO.
Sizes can vary greatly, but even a large buffer will eventually be filled. Unless the machine
and buffer have some means to signal when the buffer is about to be filled, incoming data
will overflow the buffer and be lost. Because of this, it is generally necessary to have some
type of protocol, or “handshaking,” that will prevent buffer overrun.

BUFFER OVERRUN

There are several methods of dealing with the problems of buffer overrun, Parallel
interfaces and some serial interfaces will use an internal method called hardware flagging.
Hardware flagging means that when the device’s buffer begins to fill, say, half full, the de-
vice will send a signal to the host computer that will stop the transmission of data.

While the RS5-232 interface was conceived as an industry-wide standard so that ma-
chines would be pin-by-pin compatible in their wiring, in fact, the machinery is widely di-
vergent from this ideal. Theoretically, all of the pins—or signals—should be directly
connected to their corresponding mates, Unfortunately, this is rarely the case. Because
there are so many different wiring schemes, it is impossible to generalize. Someone hoping
to hook up a computer and peripheral device with the RS-232 interface will, in many cases,
be forced to experiment with different wiring schemes. Most commonly, this hardware
flagging will potentially involve signals on pin 20 (Data Terminal Ready—DTR), pin 5 (Clear

54

DRAWING WITH COMPUTERS

To Send—CTS), pin 6 (Data Set Ready—DSR), and pin 8 (Data Carrier Detect—DCD). In-
stead of being wired pin-for-pin, these pins may have to be interconnected in some way.
Frequently pins 6 and 20 are interchanged. In other words, the signal from pin 6 will be
routed to pin 20, and vice versa.

The second strategy is simply to slow the transmission of data in some manner.
There are two easy ways to do this. The first method lowers the baud rate so that the pe-
ripheral device consumes data faster than it is sent from the host computer. Another similar
technique would be to use a software delay. As each command is sent to the peripheral,
the program could jump to a subroutine that would contain a timing loop. This loop could
even base its length on the distance between points being plotted, for instance. While such
delay techniques are easy to implement, they have two important disadvantages. First, the
peripheral may waste a great deal of time waiting for commands to be received from the
host. Second, peculiar circumstances may arise in which there is a data overrun. In that
case, data will be lost.

Many serial devices use a third method called software flagging or handshaking. This
technique causes the peripheral device to send to the host an ASCII control character—
ASCII 19—that says, in effect, “my buffer is almost full, stop sending data.” Naturally, the
host computer must be able to read this character and act upon it, for the desired effect.
When the buffer has been sufficiently depleted so that the device is capable of receiving
more data, an ASCII 17 is sent to the host, saying, “you may now safely send more data.”
This protocol is sometimes called XON/XOFF or DC1/DC3 handshaking. The following
listing will show a rudimentary form of XON/XOFF handshaking that might be imple-
mented in a BASIC subroutine. The program would jump to this subroutine each time data
was sent to a peripheral device.

1000 'XON/XOFF Subroutine

1010 IF EOF(1) THEN RETURN

1020 A$=INPUT$(1,1)

1030 IF RIGHT$(A$,1)=CHR$(19) THEN 1050
1040 IF RIGHT$(A$,1)=CHR$(17) THEN RETURN
1050 A$=INPUT$(1,1)

1060 GOTO 1030

This XON/XOFF listing was written for an IBM PC and may require some modifica-
tion to work with other microcomputers. It is also important to remember that many, but
not all, devices are capable of sending the XON/XOFF control characters. If you are in
doubt, check the specifications of the particular machines, or with the manufacturer,

4. FIRST PRINCIPLES: HOW TO MAKE
YOUR PLOTTER DO SOMETHING/ANYTHING

NOW LET'S MOVE from the theoretical to actual practice. Much of the instruction to fol-
low will be specifically in reference to operating a pen plotter, but in general terms it will
apply to almost any type of display device. Our example will be the ultimate in simplic-
ity—drawing a single line. In the case of the video display with a machine like an IBM PC,
which has a large set of graphics primitives included in the BASIC language, we can draw
such a line thus:

100 SCREEN 1 'Initialize graphic mode
110 LINE(STARTX,STARTY)-(ENDX,ENDY) 'Draw a line

Such a program will obviously only operate on a machine with appropriate graphics capa-
bilities. A display with only alphanumeric capabilities would not produce a line.

In the case of a peripheral device—our example will be a pen plotter with a serial
interface—we must do three things. First, open a line of communications between the mi-
crocomputer and the plotter; second, initialize the plotter; and, finally, command the plot-
ter to draw a line to the specified coordinates:

100 OPEN "COM1,1200,0,7,1" AS #1 'Serial communications opened
110 PRINT #1,"!AE" 'Initialize plotter

120 STARTX=100

130 STARTY=100

140 ENDX=200

150 ENDY=200

160 PRINT #1,"!AX"+STR$(STARTX)+STR$(STARTY); 'Move

170 PRINT #1,"!AY"+STR$(ENDX)+STR$(ENDY); 'Draw

While this listing provides the essential details of drawing a line with a plotter, there
are many things that may intervene to prevent the line from being drawn. Indeed, it is un-
usual when everything works on the first try. It is always frustrating, and sometimes mad-

56

DRAWING WITH COMPUTERS

dening, to try to diagnose where the error lies. Often, the first thought is that the hardware
is at fault. Somehow, one of the chips must be broken. In fact, some kind of hardware fail-
ure, though not impossible, is probably least likely.

The most probable source of difficulties is in the software. Check both the BASIC
manual and the manual for your printer or plotter. The format of PRINT statements can be
critical. Check the format of the numbers that are being sent to the peripheral device. Ac-
tually printing them out on the screen may be a helpful debugging procedure. The num-
bers or variables may have to be converted into integers or converted into strings of ASCII
characters,

Another important source of potential problems is the cables and associated con-
nectors. It may be necessary to rewire the RS-232 connection and experiment with various
wiring arrangements, If you have made up your own cable and connectors, carefully check
your soldering. Be certain that electrical continuity exists from one end of the cable to the
other. The continuity can be easily checked with a voltmeter. If you do not have a volt-
meter, a continuity checker can be improvised with nothing more than a 1.5-volt battery, a
flashlight bulb, and two pieces of wire.

Most devices will have some sort of self-testing routine available. This self-test
should be used if there is a failure to establish communications between the host computer
and peripheral device. Finally, after testing for all of these possible flaws, it is possible that
some sort of hardware problem may exist. Again, in most cases, hardware failure is least
likely. Check with your dealer or the manufacturer for the procedure to follow in attempt-
ing to isolate the problem,

When the computer and peripherals fail to perform, the experience can be exceed-
ingly irritating. Relax! Stop for a while and do something else, then go back to your labors.
In most cases, the problem will be a simple one, but not necessarily an obvious one.

57

5. ONE HUNDRED SQUARES:

BEGINNING GRAPHICS PROGRAMMING

NOW THAT we have learned to communicate with a plotter and have gained some famil-
iarity with coordinate systems, let’s try to draw a picture, Our first picture may not be an
enduring masterpiece, but at least it will be fun. It will also give us a good starting place
from which we can grow

First, we will draw a square. We will assume that the plotter has been initialized and
that MOVE and DRW (DRAW) strings have been defined previously. The input command
of lines 70 and 80 of listing DRAWSQ) asks us to give the program a starting value for the x
and y coordinates. Line 110 commands the plotter to move to XO (x origin) and YO (y ori-
gin). We will complete the drawing of the square by moving the pen around in clockwise
fashion. Our first DRW, therefore, does nothing to the y coordinate but adds the SIDE di-
mension to the x coordinate. In the second DRW, the x and y coordinates are incremented
with the SIDE dimension, The third DRW places the pen at the y dimension plus the SIDE
value, but uses the original x dimension. And finally, we head for home with the final
DRW, which, of course, has the same coordinates as our initial MOVE,

10 DEFINT A-Z' DRAWSQ

20 CLS

30 MOVE$="1!AX"

40 DRW$="1AY"

50 OPEN "COM1:1200,0,7,1" AS #1
60 PRINT #1,"!AE"

70 INPUT "X origin";XO

80 INPUT "Y origin";YO

90 INPUT "Side of square";SIDE

100 GOSUB 260

110 PRINT #1,MOVE$+STR$(XO)+STR$(YO)

120 GOSUB 260

130 PRINT #1,DRW$+STR$ (XO+SIDE)+STR$(YO)

140 GOSUB 260

150 PRINT #1,DRW$+STR$ (XO+SIDE)+STR$(YO+SIDE)
160 GOSUB 260

170 PRINT #1,DRW$+STR$(X0)+STR$(YO+SIDE)

(continued on next page)

58
DRAWING WITH COMPUTERS

180 GOSUB 260

180 PRINT #1,DRW$+STR$(XO)+STR$(YO)+";"
200 PRINT

210 GOTO 70

220 !

230 !

240 !

250 !

260 'XON/XOFF subroutine

Once we have conquered the square, why not proceed to let our machine do one of
the things that computers do best. Instead of one square, we will make many squares.

Listing DRAW100SQ has two FOR ... NEXT loops. These loops create a series of
rows and columns. The square-drawing sequence will be repeated with each pass through
the loops. We add several new inputs in line 90 and line 100. These inputs ask for the SIDE
dimension (the dimension of the square) and the SIZE dimension (the distance between
squares). The outer loop, ROW, controls the x coordinates. The inner loop, CLM, controls
the y coordinates. We will use a STEP of 70. The program multiplies this STEP by nine, There
will be ten STEPs along the ROWs and ten STEPs along the columns (CLMs). Thus, we will
draw one hundred squares. The GOSUB 310 uses the XON/XOFF communications program
to check the data flow between computer and plotter.

10 DEFINT A-2' DRAW1003Q

20 CLS
30 MOVE$="!AX"
40 DRW$="!1AY"

50 OPEN "COM1:1200,0,7,1" AS #1

60 PRINT #1,"1AE";

70 INPUT "X origin";X0

80 INPUT "Y origin";YO

90 INPUT "Step size";SIZE

100 INPUT "Side of square";SIDE

110 FOR ROW=X0O TO XO+SIZE*g STEP SIZE

120 FOR CLM=YO TO YO+SIZE*Q STEP SIZE

130 GOSUB 310

140 PRINT #1,MOVE$+STR$(ROW)+STR$(CLM)

150 GOSUB 310

160 PRINT #1,DRW$+STR$ (ROW+SIDE)+STR$(CLM)
170 GOSUB 310

180 PRINT #1,DRW$+STR$(ROW+SIDE)+STR$(CLM+SIDE)
190 GOSUB 310

200 PRINT #1,DRW$+STR$ (ROW)+STR$ (CLM+SIDE)
210 GOSUB 310

220 PRINT #1,DRW$+STR$ (ROW)+STR$ (CLM)+";"
230 NEXT CLM

240 NEXT ROW

250 PRINT

260 GOTO 70

270 '

280 '

290 !

300 !

310 'XON/XOFF subroutine

59
ONE HUNDRED SQUARES: BEGINNING GRAPHICS PROGRAMMING

Each time the program runs through the five lines of MOVE and DRWs, it will draw a
square, using the x and y coordinates provided by ROW and CLM. The vanable that con-
trols the dimension, SIDE, remains the same and is simply added, when needed, to the x
and y coordinates.

In Fig. 1 we have four drawings made using difierent values. The STEP dimension is
listed at the upper left corner of each drawing. After the STEP dimension, the SIDE is
printed out. In the lower right drawing, using a slightly smaller value for SIDE—60—the
grid takes on a different visual quality, In the lower left drawing, the SIDE is 20. Finally, in

FIG. 1.

70, 188 70, 7@

79, 20 70, 6@
000DO0DOOODDODO]]][]
(o T < T - T = = O = T = T = B < = 1]
OO0 ODOoOODDODDDOOD i 1
000D DO0DOoOODODODOD _‘Il
DooDOoDoOoDOGOoao]] 1
0DOODooOOOGOGoaon 1
oCooOoDODODOUOOD

0DDDODDDOODD

oDooooOoOoOOoOOOaOD

O 0OO0OOOoOOOORGOORa o

60

DRAWING WITH COMPUTERS

the upper left drawing, we use a large SIDE value, 100. Once again, the grid takes on a new
appearance.

Although these drawings could hardly be described as momentous, they reveal how
rapidly drawings can be made and how simple changes in only a single numeric value can
create images that are very distinct from one another,

Using these same principles and the same values for SIDE, we will now add a varia-
tion to our theme. We modify our program in listing DRAW1005Q2, by adding line 130,
which tests whether a randomly generated number is greater than a quantity we place in
our program. Each time we invoke the random-number generator, a value is produced be-
tween 0 and 1, such as 0.3748938. We will use 0.5 for the value to test the RND number. In
about half the cases, our program will execute the commands to draw a square, and the rest
of the time it will jump down to the NEXT statement in line 240. The process will then re-
peat. We will use the same SIDE dimensions as before—20, 60, 70, 100.

10 DEFINT A-2' DRAW100SQ2

20 CLS

30 MOVE$=""!AX"

40 DRW$="!1AY"

50 OPEN "COM1:1200,0,7,1" AS #1
60 PRINT #1,"!AE";

70 INPUT "X origin";XO0

80 INPUT "Y origin";YO

90 INPUT "Step size";SIZE

100 INPUT "Side of square";SIDE
110 FOR ROW=X0 TO XO+SIZE*9 STEP SIZE

120 FOR CLM=YO TO YO+SIZE*9 STEP SIZE

130 IF RND>.5 THEN 240

140 GOSUB 350

150 PRINT #1,MOVE$+STR$ (ROW)+STR$(CLM)

160 GOSUB 350

170 PRINT #1,DRW$+STR$ (ROW+SIDE)+STR$(CLM)
180 GOSUB 350

190 PRINT #1,DRW$+STR$ (ROW+SIDE)+STR$(CLM+SIDE)
200 GOSUB 350

210 PRINT #1,DRW$+STR$ (ROW)+STR$ (CLM+SIDE)
220 GOSUB 350

230 PRINT #1,DRW$+STR$ (ROW)+STR$(CLM)+";"
240 NEXT CLM

250 NEXT ROW

290 PRINT

300 GOTO 70

310 !

320 !

330 ¢

340 '

350 'XON/XOFF subroutine

These simple mathematical manipulations produce distinctive visual results. Not
only does Fig. 2 give us an immediate graphic depiction of what a random-number gen-
erator does, but we also have images that strongly evoke the abstract art of the early twen-
tieth century. The pattern on the upper left seems to be of particular interest. Using a SIDE
value of 100 and STEP of 70 creates random squares, but there are also several side effects.
Other, smaller, squares and rectangular figures emerge from the network of lines. The un-

61
ONE HUNDRED SQUARES: BEGINNING GRAPHICS PROGRAMMING

expected creation of these smaller squares and rectangles is a perfect illustration of the vis-
ual excitement computer graphics provide. If we had carefully and systematically planned
to make this drawing by hand, we might have been aware of the results we would obtain,
But art making is often a spontaneous activity. These unplanned efiects encourage our ex-
perimentation. Creative impulses are stimulated by the playfulness of this process. All that
was necessary in this case, was a rudimentary modification of the program. The machinery
does the work for us—quickly, precisely, and patiently.

FIG. 2
70, 100 78, 78
] 1 |
I
] [1]
78, 20 70, 6@
o 8] o o : DD_ [JD
O o0D0DOD0 oo [J[J [J
ST amn
o o o o D 1]
a} =] (oI =} (s} E : :
Z . OD oo '—[][] ___E,__ |
= B B I OoD 2 — ‘—‘L‘”—‘
o o EERE = =
e O 0O 0O0O0d

62

DRAWING WITH COMPUTERS

10 DEFINT A-
20 CLS

30 MOVE$="!A
40 DRW$="1AY

rA DRAW100SQ3

x"

"

50 OPEN "COM1:1200,0,7,1" AS #1

60 PRINT #1,
70 INPUT "X
80 INPUT "Y
90 INPUT "St
100 INPUT "S
110 INPUT "R
120 DEF FNRV
130 FOR ROW=
140 FOR
150

160

170

180

190

200

210

220

230

240

250 NEX
260 NEXT ROW
300 PRINT
310 GOTO 70
320 !

330 !

340

350

360 'XON/XOF

n !AE";
origin";X0
origin";YO
ep size";SIZE
ide of square";SIDE
andom side value";RVAL
AL=RND*RVAL
X0 TO XO+SIZE*Q STEP SIZE
CLM=YO TO YO+SIZE*Q9 STEP SIZE
GOSUB 360
PRINT #1,MOVE$+STR$(ROW)+STR$(CLM)
GOSUB 360
PRINT #1,DRW$+STR$ (ROW+SIDE+FNRVAL)+STR$ (CLM+FNRVAL)
GOSUB 360
PRINT #1,DRW$+STR$ (ROW+SIDE+FNRVAL)+STR$ (CLM+SIDE-FNRVAL)
GOSUB 360
PRINT #1,DRW$+3STR$ (ROW+FNRVAL)+STR$ (CLM+SIDE-FNRVAL)
GOSUB 360
PRINT #1,DRW$+STR$ (ROW)+STR$(CLM)+";"
T CLM

F subroutine

Investigating a similar use of random numbers, the computer and plotter will now
be instructed to add a random value to each of the x and y coordinates at the corner of our
square. To allow for the closure of the square, our last DRW must return to the starting
point. Listing DRAW1005Q3 shows the modification to the input statements as well as the
addition of FNRVAL to the DRW statements. Let us run the same set of numbers through
the machine again—20, 60, 70, and 100. With each run, we will use a different value for
FNRVAL. The FNRVAL value is the third number printed out at the upper left of each
drawing.

Fig. 3 (p. 64) shows our familiar collection of one hundred squares. But this time
they are distorted and twisted. The small boxes are not boxes. Perhaps they could be stones
or snowflakes. All of the patterns in this illustration begin to look as if they were made by
the artist’s hand, not the computer. Adding random values creates images with a wholly
different visual feeling from the rigid geometric figures.

63
ONE HUNDRED SQUARES: BEGINNING GRAPHICS PROGRAMMING

10 DEFINT A-Z' DRAW1003Q4

20 CLS

30 MOVE$="!1AX"

40 DRW$="!1AY"

50 OPEN "COM1:1200,0,7,1" AS #1

60 PRINT #1,"!AE"Y;

70 INPUT "X origin";XO

80 INPUT "Y origin";YO

90 INPUT "Step size";SIZE

100 INPUT "Side of square";SIDE
110 INPUT "Random side value";RVAL
120 DEF FNRVAL=RND¥*RVAL

130 FOR ROW=X0 TO XO+SIZE¥*Q STEP SIZE

140 FOR CLM=YO TO YO+SIZE*Q STEP SIZE

150 IF RND>.5 THEN 260

160 GOSUB 340

170 PRINT #1,MOVE$+STR$(ROW)+STR$(CLM)

180 GOSUB 340

190 PRINT #1,DRW$+STR$(ROW+SIDE+FNRVAL)+STR$ (CLM+FNRVAL)
200 GOSUB 340

210 PRINT #1,DRW$+STR$(ROW+SIDE+FNRVAL)+STR$ (CLM+SIDE-FNRVAL)
220 GOSUB 340

230 PRINT #1,DRW$+STR$ (ROW+FNRVAL)+STR$ (CLM+SIDE-FNRVAL)
240 GOSUB 340

250 PRINT #1,DRW$+STR$ (ROW)+STR$ (CLM)+";"

260 NEXT CLM

270 NEXT ROW

280 PRINT

290 GOTO 7O

300 !

310

320 !

330 '

340 '"XON/XOFF subroutine

64 70, 100, 25 70, 70, 28

DRAWING WITH COMPUTERS . -
—
FIG. 3. f_‘ ¥ o
L |
AS
70, 28, @ 78, 680, 19

FIG. 4.

79, 129, 25 70, 70, 25

(FEE
1
é;.
=

O
Y i nE|

Continuing to cut and paste our BASIC program, we can now combine all of our
tricks. We add the random number test, line 150. Fig. 4 demonstrates the ultimate results.

It should now be obvious that even a very simple program can provide a large
amount of visual variety, You can glimpse the power and versatility of computer-generated
images, using even a minimal program like One Hundred Squares.

65
ONE HUNDRED SQUARES: BEGINNING GRAPHICS PROGRAMMING

HATCHPLOT

USING A SIMPLE modification to the existing square program, we will now create tonal
values of gray—or whatever color ink you might be using. Creating tonal values with some
type of linear medium, such as pencil or pen, is frequently done using series of parallel
lines. This is called hatching. Printmakers and engravers brought the technique of hatching
to a very high level. A good example is the engraving on bank notes or paper currency. We
will now add instructions for hatching to our program,

10 DEFINT A-Z2' HATCHPLOT1

20 CLS

30 MOVE$=""!AX"

40 DRW$="1!AY"

50 OPEN "COM1:1200,0,7,1" AS #1

60 PRINT #1,"!AE";

70 INPUT "X origin";XO

80 INPUT "Y origin";YO

90 INPUT "Step size'";SIZE

100 INPUT "Side of square";SIDE
110 INPUT "Hatching interval";HTCH
120 FOR ROW=XO TO XO+SIZE*9 STEP SIZE

130 FOR CLM=YO TO YO+SIZE*g STEP SIZE

140 FOR INCR=0 TO SIDE STEP HTCH

150 GOSUB 280

160 PRINT #1,MOVE$+STR$(ROW)+STR$ (CLM+INCR)
170 GOSUB 280

180 PRINT #1,DRW$+STR$(ROW+SIDE)+STR$(CLM+INCR)
190 NEXT INCR

200 NEXT CLM

210 NEXT ROW

220 PRINT

230 GOTO 70

240 !

250 !

260 !

270 !

280 'XON/XOFF subroutine

FIG. 5.

~
L4
8
$

w

s 2 = s @a-C- 8B ="
" R = B - 2 - B =
=S ", =z R
=ae s =0 s=a
= 0 - 1 =& 8 E B =
s "o =8B =z=8
E -2 B = ®»w =B =B
W == 0 o5 = F=
- B - B - 8B B8 EB=2
w08 = B2 ===

Listing HATCHPLOT 1 adds several new lines to the procedure. We ask for INPUT of
the distance between the parallel lines of the hatching. This interval gets the variable name
HTCH. A new FOR ... NEXT loop is added inside the other two loops. This loop adds an
increment to the vertical, or y, axis locations. This increment is called INCR and is simply
the SIDE divided by the HTCH variable. The MOVE in line 160 moves the pen carriage, with

67
ONE HUNDRED SQUARES: BEGINNING GRAPHICS PROGRAMMING

the pen up, to the lower left position. The DRW (in line 180) then causes a line to be traced
to the lower right corner. This pattern is repeated until the loop reaches the side value, thus
completing a hatched square. The program will then proceed to make ninety-nine addi-
tional hatched squares. In Fig. 5 the third number at the upper left of each drawing is the
hatching interval, or INCR.

As in preceding cases, we can modify this program very easily in a variety of ways.
We can add a random number test that will plot a random number of squares. Listing
HATCHPLOT 2 multiplies the HTCH value by a random value that is multiplied by the
SIDE. Fig. 6 reveals that each square has a different tonal value.

10 DEFINT A-Z' HATCHPLOT2

20 CLS
30 MOVE$="!AX"
40 DRW$="!AY"

50 OPEN "COM1:1200,0,7,1" AS #1

60 PRINT #1,"!AE";

TO INPUT "X origin";XO

80 INPUT "Y origin";YO

90 INPUT "Step size";SIZE

100 INPUT "Side of square";SIDE

110 INPUT "Hatching interval";HTCH
120 FOR ROW=X0 TO XO+SIZE*Q9 STEP SIZE

130 FOR CLM=YO TO YO+SIZE*Q STEP SIZE

140 FOR INCR=0 TO SIDE STEP SIDE/HTCH* (RND*SIDE)
150 GOSUB 280

160 PRINT #1,MOVE$+STR$(ROW)+STR$ (CLM+INCR)

170 GOSUB 280

180 PRINT #1,DRW$+STR$ (ROW+SIDE)+STR$(CLM+INCR)
190 NEXT INCR

200 NEXT CLM

210 NEXT ROW

220 PRINT

230 GOTO 70

240 !

250 '

260 !

270 !

280 'XON/XOFF subroutine

DRAWING WITH COMPUTERS

We can continue to expand upon the theme and variations. We have just made a set
of squares with different tonal values, and with a little tinkering with several lines of the
BASIC program, it is simplicity itself to alter the visual qualities of the image. Our next two
variations are produced in the same way as those in the One Hundred Squares program—
by modifying the SIDE dimension and supplying a random value to vary the SIDE dimen-
sion. We multiply the SIDE value by 2 and then multiply that value by a random number.
Each square is, therefore, of a randomly determined size. Line 130 produces this new ran-
domly determined value for SIDE each time the program passes through the loop.

10 DEFINT A-Z' HATCHPLOT3

20 CLS

30 MOVE$="1AX"

40 DRWH="!1AY"

50 OPEN "COM1:1200,0,7,1" AS #1
60 PRINT #1,"!1AE";

70 INPUT "X origin";XO

80 INPUT "Y origin";YO

90 INPUT "Step size";SIZE

100 INPUT "Side of square";SIDE
110 FOR ROW=XO TO XO+SIZE*3 STEP SIZE

120 FOR CLM=YO TO YO+SIZE*Q STEP SIZE

130 RNDSIDE=SIDE*RND*2

140 FOR INCR=0 TO RNDSIDE STEP (RND*RNDSIDE)+1
150 GOSUB 290

160 PRINT #1,MOVE$+STR$ (ROW)+STR$ (CLM+INCR)
170 GOSUB 290 :

180 PRINT #1,DRW$+STR$(ROW+RNDSIDE)+STR$(CLM+INCR)
190 NEXT INCR

200 NEXT CLM

210 NEXT ROW

220 PRINT

230 PRINT

240 GOTO 70

250 '

260 '

270 '

280 !

290 'XON/XOFF subroutine

Fig. 7 reveals the results of these simple manipulations. Again, the images we have
created are modest and somewhat less than astonishing, but nonetheless we have an indi-
cation of the ease involved in transforming the image.

Let us now run the program again with a different set of values, Using a much larger
value for the SIDE dimension, multiplied by 6, and a small random value—0.3—to deter-
mine whether to plot the boxes, we again obtain another visual variant of our original
theme. Fig. 8 (p. 70) shows the results. Because of the large random values generated for
the SIDE, some of the boxes overlap. Since our image is composed of a series of parallel
lines with different intervals between the hatchings in each box, we begin to see another
new effect. The pattern formed by the two overlapping hatchings is called the moire effect.
A moire pattern is a third pattern created when two other patterns are superimposed upon
one another, Originally the term moire referred to wavy, watery patterns in certain fabrics,
but something similar can be seen in a highly linear drawing such as we are making.

69
ONE HUNDRED SQUARES: BEGINNING GRAPHICS PROGRAMMING

FIG. 7.

R : "= =-—m_®mnm

- =Em = ¢ e E

= E_=m B = -

=z 9+ =« . =m0

==w . =N ==-Nn

—=mREC - =

s = 28 = .§:.
" Bl

10 DEFINT A-Z' HATCHPLOT4

20 CLS

30 MOVE$="!AX"

40 DRW$="!1AY"

50 OPEN "COM1:1200,0,7,1" AS #1

60 PRINT #1,"!AE";

70 INPUT "X origin";XO0

80 INPUT "Y origin";YO

90 INPUT "Step size";SIZE

100 INPUT "Side of square'";SIDE

110 FOR ROW=X0 TO XO+SIZE¥*Q STEP SIZE

(continued on next page)

70

DRAWING WITH COMPUTERS

FIG. 8.

120 FOR CLM=YO TO YO+SIZE¥9 STEP SIZE

130 RNDSIDE=SIDE*RND*6

140 IF RND>.3 THEN 210

150 FOR INCR=0 TO RNDSIDE STEP (RND*RNDSIDE)+3
160 GOSUB 290

170 PRINT #1,MOVE$+STR$(ROW)+STR$(CLM+INCR)
180 GOSUB 290

190 PRINT #1,DRW$+STR$(ROW+RNDSIDE)+STR$(CLM+INCR)
200 NEXT INCR

210 NEXT CLM

220 NEXT ROW

230 PRINT

240 GOTO 70

250 !

260 !

270 '

280 '

290 'XON/XOFF subroutine

70, 100 70, F————

’1

1

ONE HUNDRED SQUARES: BEGINNING GRAPHICS PROGRAMMING

FIG. 9.

As an example of exploiting whatever creative effects we may discover in these
drawing experiments, we can attempt to use moire patterns. We will go back to our original
hatching program. First, we will plot our series of squares, using the same hatching value
for each square and the same SIDE dimension. We obtain a very regular matrix of hatched
squares. Next, we will plot over these squares another series of smaller squares with regular
SIDE values but using randomly chosen values for the hatching. In Fig. 9, the vivid moire
effect is seen. Each of the smaller squares with its slightly different hatching value pro-
duces, in turn, another moire pattern with the underlying square.

Y
®
N

I

L

72

DRAWING WITH COMPUTERS

At this point, you already may have invented your own variations on these themes.
Both the One Hundred Squares and Hatchplot programs are very simple. The variations we
have used involve elementary alterations of the basic concepts of the program. There are
many other possibilities. Instead of using only horizontal lines in the Hatchplot program,
we could use vertical hatching or a combination of horizontal and vertical lines. If we were
using a plotter with multiple pens, it would be an easy matter to shift between the different
pens, using a random-number test in the same way we used a test to plot only part of the
time. Or we could alternate between hatched squares and boxes, and so forth.

The possibilities boggle the mind. Contrary to any notion of the computer stifling
the creative and aesthetic impulses of the artist, this simple exercise of the squares demon-
strates that the possibilities are great. Indeed, the possibilities are vast, and, as when the
artist sits staring at the blank canvas or sheet of paper, using the computer is only limited
by your imagination. The vast possibilities can even be a liability. Indeed, as the artist Harry
Holland has said, “the machine’s very flexibility makes it essential to be strictly decisive or
else wallow in a sea of alternatives.”

INTERACTIVE HATCHPLOT

UP TO THIS POINT we have always made a grid of ten by ten squares, creating one hun-
dred figures in the image. Once again, using a few elementary modifications to the pro-
gram, the graphic nature of the results can be changed. Instead of being confined to
making a ten-by-ten matrix, two INPUT statements will be added that will allow the use of
any number of rows or columns.

Our two loops that generate the rows and columns are multiplied by nine, or in our
particular case, ten minus one, This is necessary to satisfy the manner in which the loops
generate our numbers. We will specify our two variables as NUMROW and NUMCLM, for
the number of boxes in each row and the number of boxes in each column. When we sub-
stitute these values in the loops, we obtain NUMROW~=-1 and NUMCLM=1. When we ac-
tually plot our hatched square, we can plot rectangular matrices of any dimension at any
location on our plotting surface.

10 DEFINT A-Z! HATCHPLOTS

20 CLS

30 MOVE$="1AX"

40 DRW$="1!AY"

50 OPEN "COM1:1200,0,7,1" AS #1

60 PRINT #1,"!AE";

70 INPUT "X origin";X0

80 INPUT "Y origin";YO

90 INPUT "Step size";SIZE

100 INPUT "Side of square";SIDE
110 INPUT "Hatching interval;HTCH
120 INPUT "Length of row";NUMROW
130 INPUT "Length of clm";NUMCLM
140 FOR ROW=XO TO XO+SIZE*(NUMROW-1) STEP SIZE

150 FOR CLM=YO TO YO+SIZE*(NUMCLM-1) STEP SIZE

160 FOR INCR=0 TO SIDE STEP HTCH

170 GOSUB 300

180 PRINT #1,MOVE$+STR$ (ROW)+STR$ (CLM+INCR)

190 GOSUB 300

200 PRINT #1,DRW$+STR$(ROW+SIDE)+STR$(CLM+INCR)
210 NEXT INCR

220 NEXT CLM

73
ONE HUNDRED SQUARES:

230
240
250
260
270
280
290
300

BEGINNING GRAPHICS PROGRAMMING

NEXT ROW
PRINT
GOTO 70

A\l
A\l
\l
A\l

'XON/XOFF subroutine

If we should want to plot a single hatched square we input values of 1 for both the
row and column values. If we wanted to plot a rectangle of 37 rows by 119 columns, that
would be fine as well. With each run of the program we must specify the x and y origins of
the rectangle.
In Fig. 10 (p. 74) we see the results of such a series of runs. Eleven rectangular matri-
ces have been plotted on the paper. As the program ran, | chose values for the rectangles
and entered them into the machine, and the plotter proceeded to plot them. The following
is a sample output from this series of runs of the Interactive Hatchplot program.

X erigin? 200

Y origin? 200
Step size? 60
Side of square?
Hatching interva
Length of row? 2
Length of clm? 2

X origin? 220
Y origin? 100
Step size? 60

X origin? 387
Y origin? 125
Step size? 66
50 Side of square? 8
) By Hatching interval? 5
0 Length of row? 10
Length of ¢lm? 10

X origin? 344
Y origin? 317
Step size? 130

Side of square? 10 Side of square? 80
Hatching interval? 5 Hatching interval? 10
Length of row? 25 Length of row? 2

Length of clm? 8

Length of clm? 4

X origin? 1000

Y origin? 700

Step size? 100

Side of square? 12
Hatching interval? 5
Length of row? 10
Length of clm? 10

X origin? 733

Y origin? 1400

Step size? 50

Side of square? 12
Hatching interval? 12
Length of row? 20
Length of clm? 3

(continued on next page)

74
DRAWING WITH COMPUTERS

X origin? 766 X origin? 117

Y origin? 1488 Y origin? 792

Step size? 47 Step size? 233

Side of square? 13 Side of square? 203
Hatching interval? 6 Hatching interval? 11
Length of row? 24 Length of row? 2
Length of clm? 4 Length of clm? 2

X origin? 722 X origin? 90

Y origin? 1403 Y origin? 760

Step size? 33 Step size? 233

Side of square? 8 Side of square? 44
Hatching interval? 4 Hatching interval? 3
Length of row? 24 Length of row? 2
Length of clm? 3 Length of clm? 2

X origin? 100

Y origin? 800

Step size? 233

Side of square? 215
Hatching interval? 12
Length of row? 2
Length of clm? 2

E W EN®ESIESEESEESEEEEESEEW
FIG. 10. avsnnlslaudadsss " ahata
W BN ENE R EE NN RN E SRS RN
SRR AILIAEAE ey

b o8 e Pved

L L B L B L L .

- - - B - - - "
- - - - - - - .
- - - - - - - -
- - - - - - " -
"'—% - - - - - - B -
B e o o o o . e - - - . - " -
— e
i
L e o I e L N R e I e
L e R T O I L T e A
L . — 5 L S SR A DL IO B BT B A B B I S
.- - E-. L O I O L I R]
EE EEEEEE - - - -
=E= EEEEEE - - - -
L L T I O T I I
* mox w momoE o8 ow o owEEEoEowosomowosoEorowowow

75

ONE HUNDRED SQUARES; BEGINNING GRAPHICS PROGRAMMING

What this program and drawing procedure really represent is a crude computer-
aided-design (CAD) system. It is totally interactive. This means that it really is capable of
doing nothing unless the artist or designer gives the system a series of numbers upon which
to act as the program runs.

This drawing program is also a good illustration of the sort of methodology with
which the artist and the computer operate. In the previous example of the One Hundred
Squares, we set up a series of conditions to which the computer would respond. These
conditions are embodied in the program. Once the program is written and run, we can only
add a few inputs to the system, such as specifying the size of the square and the spacing
between squares. When we have done that the machinery does its work.

The Hatchplot program is somewhat more interactive in its final form. It produces a
very simple geometric figure, but we can specify all of the qualities that it will have. It is
very important to note several other aspects of this drawing procedure. Each time we wish
to plot, we must specify numeric coordinates. This can be a very frustrating experience for
the artist. Working with conventional media, you simply draw a box wherever you please.
But if we want to use a plotter to put a box at a certain point in the lower left corner of our
plotting surface, we must precisely specify the numeric coordinates of that point. This fact
has both virtues and vices. In this instance, we are making a very precise geometric picture.
Being able to position the lines very accurately is a great advantage. In fact, in the case of
the drawing with moire patterns, it would be very difficult to draw the lines accurately by
hand. But the other side of the coin is that we may not be able to put our rectangle exactly
where we want it. Unless we adopt a tedious method of actually measuring with a ruler,
we may not be able to place our rectangle where our artistic sensibilities would have us
place it.

A simple solution that partially solves this program is frequently available. Many
plotters have the capability of digitizing. This means that the plotter can report the position
of its pen. When queried by the computer, the plotter will reply with the x and y coordi-
nates. Thus, it would be a simple matter to move the pen carriage to the precise point
where the image is to be plotted, query the plotter about pen position, and then input
those x and y values to the computer.

76

DRAWING WITH COMPUTERS

6. PAINT SYSTEMS: DRAWING AND PAINTING

ON YOUR VIDEO SCREEN

COMPUTER GRAPHICS SYSTEMS, like computers themselves, are a universal image-mak-
ing tool. They are capable of being used in a great variety of ways. For an artist using such a
system, there are many different methodological and aesthetic approaches. In our previous
examples we used a mixture of interactive and noninteractive methods to produce an
image. We can tell the computer to make One Hundred Squares and then introduce a ran-
dom quality that will modify the image in a somewhat predictable fashion. But when the
program runs we can never precisely predict which boxes will be plotted. Indeed, some art-
ists, such as Harold Cohen, have structured their programs so that the machinery needs ab-
solutely no input or intervention.

At the opposite pole are a whole class of computer programs that have received a
great deal of interest and attention. Paint systems or programs, as they have come to be
known, are under the total control of the artist. Most paint systems use the video screen as
the primary display device. They use a variety of methods to input graphic information to
the computer, ranging from the keyboard to digitizer pads, mice, joysticks, or light pens. In
all cases, the concept is to smoothly and effectively translate our natural hand-eye-brain
reflex into digital information for the display device.

Paint systems are literally electronic canvases. They rely completely on the conven-
tional input of the artist’s hand to create an image. Such a description may not sound like
much of an improvement over our existing drawing and painting tools. In some sense, they
are not an improvement, because, for instance, they cannot take a poor likeness of a face
and somehow magically transform the image into a good likeness. Nor will they somehow
magically change a dull composition into a lively composition. What paint systems do
offer, however, are many techniques that do border on magic.

Consider the question of color. In most cases, when the artist paints or draws using
colors, the results will tend to be quite permanent. We can repaint an area or erase a
line—correcting or altering a color is not impossible. But in many cases, it is cumbersome
and difficult. Almost all paint systems allow an almost immediate change of color of what-
ever lines or forms exist on the video screen. Not only is it possible to alter the colors imme-
diately, but, depending on the sophistication and amount of memory available in the
system, the actual choice of colors can be huge.

Similarly, most paint systems will allow the user to almost instantaneously flood or
fill a polygon or area with a color or textured pattern. This ability eliminates the tedium of
filling an area by brush.

77
PAINT SYSTEMS: DRAWING AN PAINTING ON YOUR VIDEO SCREEN

Another common feature of paint programs is the use of “brushes.” Just as the artist
can choose from a very large range of conventional physical devices to transfer color to a
surface, such as paper or canvas, most paint systems utilize different brushes to impart
color to a video screen. The brush and how it leaves a trace on paper or canvas is in some
sense, a trivial, mechanical subject. Yet in the history of painting, the manipulation of paint
by brush is absolutely central to the visual effect of a picture. Ingres strove for an absolutely
smooth polished surface, obliterating any trace of the brush stroke. Frans Hals lustily
created a heavy impasto surface with oil paint.

A modern computer paint system will offer a variety of brush effects. Some, like an
airbrush, mimic conventional art tools. Some systems allow the user to define his or her
own brush. Brushes have been designed that simulate three-dimensional forms. These
brushes produce images that appear to cast shadows and possess highlights

Paint systems are capable of encompassing a vast number of features, but there are
several qualities they must have to make them efficient tools. They must have a tactile re-
sponsiveness, This means that they must give a very quick response to movements from the
input device. Another important issue is the ease of use, We can all pick up a pen and
begin drawing, but a paint system will often require us to have some initial training in its
use. Naturally, as with most computer activities, this initial period of training and learning
is characterized by clumsiness and frustration. To improve the interaction with the system,
many paint programs will offer a menu that is displayed on the screen.

- A5 HERR

W
~<n O
|
i INISED
’ Xz] T Jre
2) I
!a ni “is';fj;'l
= LIS 110
Fe EVITISY

FIG. 1. Harry Holland. Pandamonium (Panda screen), FIG. 2. Harry Holland. Panda screen, 1983 screen
1983 screen photograph. DEC LSI-11 and an AED 512 photograph. DEC LSI-11 and an AED 512 color display
color display controller. © 1983 Harry Holland. controller. © 1983 Harry Holland.

78

DRAWING WITH COMPUTERS

Paint programs are available for almost all computers that have a graphics capability.
From the Atari 400 upward, there is a wide range of choices. The Apple Macintosh com-
puter is notable for including a sophisticated paint package as part of its standard software
offering, The MacPaint program uses a mouse as its input device and has many desirable
features, Color is not one of them.

A PAINT SAMPLE

PAINT PROGRAMS CAN be very large and complex, but they can also be very simple. At
heart they consist of a fundamental procedure:

« Establish cursor coordinates

« Input new cursor coordinates

* Update cursor coordinates

» Display “brush” at current coordinates
* Loop

As a simple demonstration, we can use the keyboard as our input device. Keyboards
are certainly not the most desirable or natural input devices for graphics but they do have
the virtue of being universally available. Listing Pen1 is written for the IBM Personal Com-
puter, using the standard numeric keypad as the origin of cursor control. The 4" and 6"
move the cursor left and right; “8” and 2" move the cursor up and down; and /7", “9”, 1",
and “3” control diagonal motion. An INKEY statement reads the keyboard and a series of IF
... THEN statements update the cursor location. The IF ... THEN statements then branch
to an ON BRUSH GOSUB that directs the program to the proper display routine.

10 CLS 'PEN1
20 KEY OFF

30 DEFINT A-Z

40 RANDOMIZE(TIMER)
50 X=160:Y=100:C=3

60 Y=100

70 C=3

80 PRINT "Brush 1=point 2=elliptical"
90 PRINT " 3=airbrush 4=zrnd lines"

100 INPUT BRUSH

110 CLS:SCREEN 1:COLOR 0,1

120 X$=INKEY$:IF X$="" THEN 120

130 LOCATE 1, 1:PRINT ASC(X$)

140 IF X$="4" THEN X=X-1:GOSUB 230

150 IF X$="6" THEN X=X+1:GOSUB 230

160 IF X$="8" THEN Y=Y-1:GOSUB 230

170 IF X$="2" THEN Y=Y+1:GOSUB 230

180 IF X$="7" THEN Y=Y-1:X=X-1:GOSUB 230
190 IF X$="Q" THEN Y=Y-1:X=X+1:GOSUB 230
200 IF X$="1" THEN Y=Y+1:X=X-1:GOSUB 230
210 IF X$="3" THEN Y=Y+1:X=X+1:GOSUB 230
220 GOTO 120

230 ON BRUSH GOSUB 250,280,370,420

240 RETURN

250 'point brush

260 PSET(X,Y),C

79
PAINT SYSTEMS: DRAWING AND PAINTING ON YOUR VIDEO SCREEN

270 RETURN

280 'elliptical brush

290 FOR EB=1 TO 6

300 PSET(X+EB,Y)

310 NEXT EB

320 FOR EB=1 TO 4

330 PSET(X+EB+1,Y+1)

340 PSET(X+EB+1,Y-1)

350 NEXT EB

360 RETURN

370 'airbrush

380 FOR AB=1 TO 15

390 PSET(X+(RND*15)+RND*5,Y+(RND*15)+RND*5),C
400 NEXT

410 RETURN

420 'rnd lines

430 LINE(X,Y)-(X+RND*10,Y+RND*10),C
440 RETURN

Pen1 has four branches for the brush subroutine. The simplest, POINT BRUSH,
places a single pixel at the current location. The ELLIPTICAL BRUSH places a crude ellipse
using individual PSET statements. The AIRBRUSH subroutine is somewhat more involved.
It has a coarse approximation of an airbrush spray pattern. In this case, our airbrush sprays a
somewhat unusual square pattern. The airbrush concept should let you see how the vari-
ables involved could be manipulated and expanded upon to produce different graphic
patterns. Finally, the last brush, RND LINES, uses the random-length line.

These various sample brushes were used to produce the images that are pictured in
Fig. 3. (p. 80). These illustrations are on a large scale, so each pixel has been enlarged. In
each case, the path of the brush stroke was identical.

Another important element of a paint program, and, indeed, of any sort of graphics
display system, is the ability to create a file from the information on the screen. Almost any
type of video display system with graphics capability will have a command that allows the
user to query the system to determine the numenc value of a pixel on the screen. For in-
stance, in the IBM Personal Computer, BASIC returns the numeric value associated with
the color on the screen, at the x and y location specified.

XX=POINT(X,Y)

1
-
1
.
o= el
-
)
FIG. 3a FIG. 3b.
TY T T T
: CrEE
| 1 1
. - -
- e
p= - isee
1
-
N
-
= 1
e
1 T
T L
AL ! R ALLELEEL ! 2 e 110
FIG. 3¢ FIG. 3d.

A formal—although not the easiest—way to preserve the graphic information on the
screen would be 1o create a sequential file and read the information with a series of row
and column loops. Many BASICs offer a more elegant method. The segment of video mem-
ory is saved in a file with a BSAVE statement. Thus,

10 DEF SEG=&HB800:BSAVE "PRETTY.PIX",0,&H4000

will save 16,000 bytes of video memory in a file. The counterpart of this procedure would
use a BLOAD statement to read that file into the frame buffer:

10 DEF SEG=&HB800:BLOAD "PRETTY.PIX",0

These complementary operations run on the IBM Personal Computer with a 16,000-byte
color graphics frame buffer,

DIGITIZERS, MICE, JOYSTICKS, LIGHT PENS

HOLDING A PEN, PENCIL, OR BRUSH in our hands is an old and familiar experience. But
making a drawing using a set of keyboard cursor commands is not. The computer graphics
industry has created many different hardware options so that computer graphics can be
made more comfortably.

a1

PAINT SYSTEMS: DRAWING AND PAINTING ON YOUR VIDEO SCREEN

The graphics pad or tablet is the oldest attempt to solve the problem of graphic
input. It is also the most directly analogous to drawing with pen or pencil on flat surfaces.
The pad or tablet—sometimes also known as a digitizer or digitizing pad—is a bit like a
plotter in reverse. Instead of moving a pen about a flat surface in response to a stream of
coordinates from the host computer, the user moves a stylus over the flat digitizer surface,
and the tablet returns a series of coordinate pairs to the computer.

These digitizing pads come in a great variety of sizes and resolutions. Recently very
small and inexpensive pads have become available for simple home computing systems.
Some of these low-resolution pads respond to the user's finger touch to return the coordi-
nate pairs, At the opposite end of the scale are very large and extremely accurate tablets.
Such large tablets or tables, which may be larger than 40” X 60" and have a resolution of
0.001”, are used in cartography and industrial CAD applications.

The most common method of transmitting the location of the stylus to the com-
puter utilizes a signal generated by the stylus that is in turn picked up by a finely spaced
grid of wires under the tablet. With the proper decoding circuitry, the pad can sense the x
and y coordinates of the stylus and send them to the computer. These coordinate pairs can
be transmitted continuously, in what is sometimes called stream mode, or can be com-
municated upon command. With the proper software in the computer, these coordinates
can be stored in a file, displayed on the screen and connected with lines, or manipulated in

FIG. 4. A 42" x 60" high-resolution digitizing pad.
Photograph courtesy of Summagraphics Corp.

82

FIG. 5. Three-key optical mouse. Photograph courtesy of Summagraphics Corp.

other ways. Some plotters have the ability to act as digitizers and can provide data in the
same ways as pads, but require the user to move the cursor—the pen carriage—using key-
board directional controls on the plotter.

Another common, but somewhat less sophisticated, input device is the joystick.
Joysticks have been heavily used with computer games to provide cursor control. They can
be useful for moving a cursor about the video display. Joysticks contain potentiometers
that sense x and y motion, The potentiometers translate the two analog electrical signals
into digital values that are transmitted to the computer. The joystick is thus only capable of
signaling indications of relative motion to the computer, unlike the graphics tablet, which
can indicate absolute position. Game paddles are another variation on the joystick and
have been mostly used with video and computer games

Although the digital mouse has been used for a number of years with computer sys-
tems, recently it has become very popular. Currently mice are used in graphics systems, but
they are perhaps even more widely used in business applications, such as word processing
and spreadsheet programs. A mouse is a bit like a joystick turned upside down. The mouse
consists of a small hand-held box that must be moved about a flat surface. The mouse rides
on wheels that produce indications of x and y motion to the computer. Like the joystick,
mice can only indicate relative motion. In business applications they are used to point to
menu selections. Typically, a mouse will have a number of buttons that enable the user to
input menu selections to the computer,

Joysticks and mice usually indicate motion and position through the use of a cursor
on the video screen. Because their relative position is translated into a cursor position, they
have lower resolution than a graphics tablet. Another device occasionally used in graphics
systems is a light pen. A light pen is pointed at the screen display. The tip of the pen con-
tains a photosensitive element that indicates to the computer whether the screen element
pointed to is on or off. Light pens can be used to draw on the screen but more commonly
are used for pointing to menu selections. Software is necessary to decode changes in the
light pen’s position.

Other factors to consider about the use of these types of input devices might in-
clude whether software is available for their use, what type of communications are used
between the device and computer, and, last and probably most important, whether the
device will meet your artistic and stylistic needs.

83
SCREENDUMP: TRANSFERRING A SCREEN IMAGE TO A PLOTTER OR A PRINTER

7. SCREENDUMP: TRANSFERRING A SCREEN IMAGE
TO A PLOTTER OR A PRINTER

THE SOMEWHAT INELEGANT term “screendump” simply means to transfer the informa-
tion on the video screen to some other device. Typically this would mean to a printer or
plotter. A screendump of alphanumeric characters that was being transferred to a printer
would have to be formated into strings. This is easily accomplished with a series of loops:

10 FOR ROW=1 TO 24

20 FOR CLM=1 TO 80

30 S$=CHR$ (SCREEN (ROW,CLM))+S$
40 NEXT CLM

50 LPRINT S$

60 S$:"l'

70 NEXT ROW

A screendump to a plotter is a useful procedure that can be performed easily. The
main complication is converting the screen coordinates into plotter coordinates.

If the screen has its origin at the lower left corner and the plotter also has its origin at
lower left, we can convert the entire screen image into plotter coordinates by multiplying
the screen coordinates by a scaling factor, If we were not concerned with the strict propor-
tions of the screen image, we could simply multiply by the maximum dimension of the
plotter.

If the width along the x axis of our screen was 320 and the dimension, in plotter
units, across the x axis was 3000, we would divide 3000 / 320 = 9.375. Thus, the scaling fac-
tor would be 9.375. We would multiply each coordinate on the screen by this scaling factor.
Performing the same operation of the y axis coordinates would produce an image that cor-
responded to the screen image. Similarly, if we multiplied the screen image by 1, we would
reproduce the screen image at the same scale as the screen coordinates; which is to say, a
very small image would be produced, because the plotter coordinates would typically be in
the neighborhood of 200 per inch. On the other hand, if we wanted to magnify our image
by a factor of 2, we would multiply the scaling factor by 2.

(DEVICECOORD/SCREENCOORD) *SCALEFACTOR

84
DRAWING WITH COMPUTERS

L o S e——

-
—

oo

FIG. 1
G. 1a. 1
4+
]
f
FIG. 1b. t
!
1
{
i
s
G. 1c. 1 —

SCREENDUMP: TRANSFERRING A SCREEN IMAGE TO A PLOTTER OR A PRINTER

If the screen image represented a figure composed of a series of points connected
with lines, it would be a simple matter to command the plotter to connect those coordi-
nate pairs with lines, using MOVE and DRW commands. Also note that when we scale this
image, it is always in reference to the origin. In other words, the two origins will always
have the same relative location,

If the origin is to be moved, an appropriate value must be added to—or subtracted
from—the x and y coordinates. This is called translation. Translation moves a figure by add-
ing, or subtracting, a value. Scaling makes a figure larger or smaller by multiplying the coor-
dinates by some value. Translation and scaling are both very important concepts but both
are essentially very simple. Fig. 1 shows these operations independently and then com-
bined together.

Using such a screendump program with a plotter permits us to employ an interest-
ing graphics strategy. If we have a color screen display, we can color our drawing by using
different color pens to correspond to the screen colors, Of course, the selected pen colors
could be whatever we choose and would not have to match the screen colors. Another
possibility would be to use different shapes or forms for each pixel to be plotted. A pro-
gram could offer a menu of different shapes to be plotted. These shapes could be as simple
or as complex as you desire. Such a collection of forms is sometimes called a shape table.
When the shape table is invoked, the program proceeds to draw some predefined form.

10
20

DEFINT A-Z' SCREENDUMP

CLS

30 MOVE$="1AX"

DRW$="1AY"

OPEN "COM1:1200,0,7,1" AS #1
PRINT #1,"!AE";

40
50
60
70
80
90

120
130
140
150
160
170
180
190
200

SCREEN 1

INPUT "Picture file name";FILNAM$

DEF SEG=&HB800:BLOAD FILNAM$,0

100 GOSUB 630

110 FOR PIXCLR=0 TO 3

FOR ROW=1*SCALE TO ((XRIGHT1+1)-XLEFT1)*SCALE STEP SCALE

FOR CLM=1¥SCALE TO ((YBOT1+1)=-YTOP)*SCALE STEP SCALE
IF POINT(XLEFT,YBOT)<>PIXCLR THEN 420
ON PIXSELC GOTO 160,280,360,360
'Outline box
GOSUB 520
PRINT #1,MOVE$+STR$ (ROW+X0)+STR$ (CLM+YO)
GOSUB 520
PRINT #1,DRW$+STR$ (ROW+SIDE+X0)+STR$(CLM+YO)

(continued on next page)

DRAWING WITH COMPUTERS

210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520

GOSUB 520

PRINT #1,DRW$+STR$ (ROW+SIDE+X0)+STR$(CLM+SIDE+YO)
GOSUB 520

PRINT #1,DRW$+STR$ (ROW+X0)+STR$ (CLM+SIDE+YO)
GOSUB 520

PRINT #1,DRW$+STR$ (ROW+X0)+STR$ (CLM+YOQ)+"3"

GOTO 420

'Hatch box

FOR INCR=0 TO SIDE STEP 3

GOSUB 520

PRINT #1,MOVE$+STR$ (ROW+X0)+STR$(CLM+YO+INCR)
GOSUB 520

PRINT #1,DRW$+STR$(ROW+X0+SIDE)+STR$ (CLM+YO+INCR)
NEXT INCR

GOTO 420

'Circle

GOSUB 520

FOR CINCR=CIRTYPE TO SIDE/2 STEP 3

PRINT #1,MOVE$+STR$ (ROW+X0+SIDE/2)+STR$(CLM+YO+SIDE/2)
PRINT #1,"!AAC"+STR$ (CINCR)

NEXT CINCR

YBOT=YBOT-1

NEXT CLM
XLEFT=XLEFT+1:YBOT=YBOT1
NEXT ROW

XLEFT=XLEFT1:YBOT=YBOT1

GOSUB 710
NEXT PIXCLR

CLOSE
END

'XON/XOFF subroutine

LOCATE
LOCATE
LOCATE
LOCATE
LOCATE
LOCATE
LOCATE
LOCATE
LOCATE

IF PIXS

:INPUT "Xleft";XLEFT1:XLEFT=XLEFT1

:INPUT "Xright";XRIGHT1:XRIGHT=XRIGHT1

INPUT "Ytop";YTOP1:YTOP=YTOP1

:INPUT "Ybot";YBOT1:YBOT=YBOT1

:INPUT "X origin";X0

:INPUT "Y origin";YO

:INPUT "Scaling factor";SCALE:SCALE=(4096/320)%*SCALE

:INPUT "Side";SIDE

:INPUT "Shape 1=Outline box 2=Hatch box 3=Circle 4=Dot";PIXSELC
=3 THEN CIRTYPE=SIDE/2-3

IF PIXSELC=4 THEN CIRTYPE=3

RETURN

87

SCREENDUMP: TRANSFERRING A SCREEN IMAGE TO A PLOTTER OR A PRINTER

FIG. 2.

AN

As an example, listing SCREENDUMP utilizes such a shape table for plotting. It will
take an image that has been generated on an IBM PC with the color graphics adapter. The
image is selected from the screen by defining the left and right x axis coordinates, and the
top and bottom y axis coordinates. An outer loop sets up four passes through the matrix of
the selected screen area. This corresponds to the four colors on the screen. Whenever the
program finds the pixel value that equals the current value in the loop, it jumps to the
shape-table section.

Returning to our previous examples, the shape table offers a square that is either
outlined or filled in, using hatching. The menu selection also offers a circle that is gen-
erated by the plotter hardware but whose starting radius and ending radius can be speci-
fied.

Such a screendump program is capable of a great deal of visual variety. For instance,
several images can be plotted in layers, one over the other. Different size parameters can be
specified for the shapes.

0) Q) (O
[]
=2
Om 0O OO0 ®EROOONMN
e m 00 e 00O e
Oe OomUe O m O e
O oe opnDoOoQnonDNn
O m O 00O ®mOOOL0CTMSN
e T U O e m 00O e O
Oe OwmOe O0ow® O O
.. 0O 0o 000 o0 e o000
QONMEBOONEO®O cscocuwmooowm
[JOCOM_®OOM_ ® ..:-0cecvo0en

DRAWING WITH COMPUTERS

8. CIRCLES AND POLYGONS

COMPUTERS can and cannot draw circles. Probably the same can be said for people. We
can all draw an approximation of a circle, but it is difficult to draw a good circle without
using a mechanical aid. The computer has a similar problem in the sense that it can draw an
approximation of a circle, but cannot ultimately draw a true circle. A circle is a polygon
with an infinite number of sides. Because the computer is a digital device, it can only ap-
proximate a circle by drawing a polygon with a large number of sides.

The proper way to draw a circle involves some simple trigonometry. If we consider
the radius of the circle to be swung through an angle of rotation, or theta, we can calculate
the coordinates of the new point with the following formula:

x = radius * sin (theta)
y = radius » cos (theta)

To use a computer to draw a complete circle, we make a loop and determine the number of
sides of the polygon with 360/n where n is the number of sides, This formula will rotate a
point around the origin, but to actually place the circle somewhere.other than the origin
we must translate it by supplying x and y coordinates and adding them to the equation.

Listing CIRCLE is a sample program that produces a ten-by-ten array of polygons,
using this formula. The program begins with a three-sided polygon—a triangle—and con-
tinues to increase the number of polygon sides by one after plotting each column. As you
can see, the approximation of a circle becomes much better as the number of sides in-
creases. Roughly speaking, the larger the relative size of the circle, the greater the number
of polygon sides necessary to produce a good illusion of a circle.

There are several other points to be made about circle drawing. Instead of drawing a
circle, an arc could be made using this formula by simply drawing from the starting angle of
the arc to the end angle of the arc instead of looping through the entire 360 degrees. Most
microcomputer BASIC languages require the trigonometric functions to be calculated in
radians, rather than degrees. Thus, it is necessary to make a conversion by multiplying theta
(the rotation angle) by pi divided by 180 degrees.

10 ! CIRCLE

20 CLS

30 PI=3.141593/180

40 P=3

50 MOVE$="!1AX"

60 DRW$="!1AY"

70 OPEN "COM1:1200,0,7,1" AS #1

89
CIRCLES AND POLYGONS

80 PRINT #1,"1AE";
90 INPUT "X origin";X0

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340

INPUT "Y origin";YO

INPUT "Step size";SIZE

INPUT "Radius of polygon";RD

FOR ROW=X0 TO XO+SIZE*9 STEP SIZE

108 = 5101 T

FOR CLM=YO TO YO+SIZE*Q STEP SIZE
X=RD*SIN(O*PI)
Y=RD¥*COS(0O¥*PI)
PRINT #1,MOVE$+STR$ (ROW+X)+STR$(CLM+Y);
FOR T=0 TO 360 STEP 360/P
GOSUB 340
X=RD*SIN(T#*PI)
Y=RD*COS(T¥*PI)
PRINT #1,DRW$+STR$(ROW+X)+STRS(CLM+Y);
NEXT T
NEXT CLM
P=P+1
NEXT ROW /%888 OOO
p=3 AOOOOQ0
PRINT 28880
('IOTO 90 ASBS 8
' A§08
: A 808
! fG.1. | ASQO @0
' XON/XOFF subroutine

Because the computation of trigonometric functions is costly in terms of time, espe-
cially with microcomputer BASIC interpreters, the generation of circles can be slow. Since
circles are symmetrical, it is possible to speed up calculations by only computing part of the
circle and then “mirroring” the coordinates for the other sections. From the user’s point of
view, the best technique of circle generation is to be able to have the circle generated by
either hardware or firmware. Often, circles are available as a graphics primitive in various
types of systems.

POLAR COORDINATES

A USEFUL AND INTERESTING variation on the idea of circle drawing is the polar coordi-
nate system, an alternative to the Cartesian coordinate system. Instead of the rectilinear or-

9%

DRAWING WITH COMPUTERS

ganization of Cartesian coordinates, polar coordinates have one dimension as a function of
angular rotation about a point. The other dimension is the distance from that center point.
The coordinates of a point would be specified by theta—or the angular rotation from 0 de-
grees—and the number of units from the origin. The direction of rotation can be clockwise
or counterclockwise,

As an example of the creative possibilities of using the polar coordinate system, we
will combine the Screendump program with a system of polar coordinates. There are a
number of things to note in the program. As in the previous Screendump program, there is
a shape table that allows a pixel to be drawn as a box, a filled box, or a circle. The dimen-
sion of the step between the plotted pixel and the dimension of the shape can be specified.
The origin of the plot is to be specified, Likewise, the point at which angular rotation is
begun must be indicated. The angular rotation, or the sweep through which the plot will
operate, is also included. The width of the boxes and the radii of the circles that are plotted
are dependent on the distance from the origin. In other words, small circles will be plotted
near the center of the circle, while larger circles would be plotted near the periphery of the
polar plot. However, this is a purely arbitrary scheme. It could be just the reverse.

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

' SCREENDUMP POLAR
CLS:PRINT "SCREENDUMP POLAR"

BNK$="

FOR D=1 TO 1000:NEXT D

CLS

DEFINT A-Y
ZPI=3.141593/180
OPEN "COM1:1200,0,7,1" AS #1:PRINT #1,"!AE" :M$="1AX":D$="1AY"
INPUT "Plot step";ST:INPUT "Plot square";ST1

PRINT "1=Circle":PRINT "2=Box fill":PRINT "3=Outline box"
INPUT BXX1

IF BXX1=3 OR BXX1=1 THEN 100

IF BXX1=2 OR BXX1=3 THEN 220

GOSUB 160

GOTO 220

LOCATE
LOCATE

1, 1:INPUT "Start radius";RA
1, 1:INPUT "Final radius";SC

LOCATE 1,1:INPUT "Step";VC

LOCATE 1,1:INPUT "Arc smoothness(1.0=course)";ARSM$

IF ARSM$="" THEN PRINT #1,"!ABA"+".5" ELSE PRINT #1,"!ABA"+ARSM$

RETURN

GOSUB 970

LOCATE 1,1:INPUT "Screen X left";XL:LOCATE 1,1:INPUT "Screen X right";XR

LOCATE
LOCATE
LOCATE
LOCATE
LOCATE
LOCATE
LOCATE

1, 1:INPUT "Y screen top";YT:LOCATE 1,1:INPUT "Y screen bottom";YB
1, 1:PRINT BNK$:LOCATE 1,1:INPUT "Radius";RD:RD2=RD

1, 1:PRINT BNK$:LOCATE 1,1:INPUT "Center plot(x axis)";CPX

1, 1:PRINT BNK$:LOCATE 1,1:INPUT "Center plot(y axis)";CPY

1, 1:PRINT BNK$:LOCATE 1,1:INPUT "Color start{O=black)";COLSTRT

1, 1:PRINT BNK$:LOCATE 1,1:INPUT "Theta start(0 to 360)";THOC

1, 1:PRINT BNK$:LOCATE 1,1:INPUT "Angular rotation";ART

ZTHR1=ART/ (XR-XL)
ZTHR2=ZTHR1*(ST1/ST)
LINE(XL-1,YT-1)-(XR+1,YB+1),3,B

LOCATE

1, 1:PRINT "Enter CONT to plot":STOP:FOR K1=COLSTRT TO 3:THR=THOC

FOR J=XL TO XR
RD1=RD:DY=1
FOR K=YT TO YB

91

CIRCLES AND POLYGONS

390
400
410
420
430
440
450
460
470
480
490
500
510
520

=AU .

[Raad)]

Z=POINT(J,K)

LOCATE 1,22:PRINT Z:LOCATE 1,30:PRINT J;K
IF Z=K1 THEN 420 ELSE 800

ON BXX1 GOTO 690,440,560

1

'Box fill

\

GOSUB 860

PRINT #1,M$+STR$(CPX+RD1*SIN(THR*ZPI))+STR$ (CPY+RD1#COS (THR*ZPT));

FOR BX1=RD1 TO RD1-ST1 STEP -2.5

GOSUB 860

PRINT #1,D$+STR$ (CPX+BX1#SIN(THR¥ZPI))+STR$ (CPY+BX1*COS(THR¥*ZPI))
GOSUB 860

PRINT #1,D$+STR$ (CPX+BX1*SIN((THR+ZTHR2)*ZPI))+STR$ (CPY+BX1#COS ((THR+Z

THR2) *ZPI))+";";

530
540
550
560
570
580
590
600
610

NEXT BX1
GOTO 780
)

'OQutline Box

GOSUB 860

PRINT #1,M$+STR$ (CPX+RD1*SIN(THR*ZPI))+STR$(CPY+RD1*COS(THR*ZPI));
GOSUB 860

PRINT #1,D$+STR$ (CPX+(RD1-ST1)*SIN(THR*ZPI))+STR$ (CPY+(RD1-ST1)*COS(TH

R*ZPI));

620
630

GOSUB 860
PRINT #1,D$+STR$ (CPX+(RD1-ST1)*SIN((THR+ZTHR2)*ZPI))+STR$(CPY+(RD1-ST1

) *COS((THR+ZTHR2) *ZPI)) ;

640
650

GOSUB 860
PRINT #1,D$+STR$(CPX+RD1*SIN((THR+ZTHR2)*ZPI))+STR$(CPY+RD1*COS((THR+2Z

THR2) *ZPI));

660
670
680
690
700
710
720
730
740

GOSUB 860

PRINT #1,D$+STR$ (CPX+RD1*SIN(THR®*ZPI))+STR$(CPY+RD1*¥COS(THR¥*ZPI))+";";
GOTO 780

'

'Circle

A

FOR I=RA TO SC STEP VC

GOSUB 860

PRINT #1,M$+STR$(CPX+(RD1-(ST1/2))*SIN((THR+ZTHR2/2)*ZPI))+STR$ (CPY+(R

D1-(ST1/2)) *COS((THR+ZTHR2/2) *ZPI)) ;

(continued on next page)

750 GOSUB 860

760 PRINT #1,"!AAC"+STR$(I*(RD1/RD2))+";";

770 NEXT:GOTO 780

780 IF DY=1 THEN 790 ELSE 800

790 BEEP:DY=0

800 RD1=RD1-ST

810 NEXT:THR=THR+ZTHR1:NEXT:LOCATE 1,1:INPUT "1=Circle 2=Box fill 3=Outlin

e box";BXX1:IF BXX1=1 THEN GOSUB 160
820 STOP:NEXT

830 GOTO 90

840 CLOSE #1'close #1 file

850 END

860 'XON/XOFF subroutine

N

.

S/
/

FIG. 2,

Using exactly the same ten-by-ten array of pixels as was used in the Screendump
program, we now proceed to plot them with a polar coordinate system. Fig. 2 shows four
such plots in which different values were used for the step size and the dimension of the
shape. The two designs on the left both have the same origin at the lower left, but the top
pattern is rotated through an angle of 30 degrees while the lower drawing is rotated
through 15 degrees. On the right, the origins are also the same, but different dimensions are
used as well as large amounts of rotation.

While the conversion of conventional Cartesian coordinates into polar coordinates
requires extra effort, the results produce very curious effects. It is also possible to apply ad-
ditional graphic transformations to the polar coordinates. For instance, the coordinates can
be scaled along either the x or y axis, creating an elliptical figure. D’Arcy Thompson, a Brit-
ish bialogist, wrote the classic On Growth and Form in 1917. In that work, Thompson dis-
cusses the relationship of the morphology of biological form to mathematics. Many of his
examples describe the transformations of a single archetypal form into a variety of dif-

FIG. 3. Mark Wilson. Skew AB10, 1984 plotter drawing on paper, 20" x 38", IBM PC and a
Tektronix 4663 plotter. © 1984 Mark Wilson.

ty

_ﬁ&f—
Sem))) =

&
dﬁn'_

-
_—

b

7

93

CIRCLES AND POLYGONS

R TR

=E==EE=
SHNEEEEE =
EEENEPEEEEEE
=HNE= HEEE_
EEE== BEE
HS& = El
=EE = =
= ===80
= ==u B
= == B
= £
=]
- = =

fering forms, using a series of different coordinate systems, including several types of polar
coordinates.

SKEW AND ROTATE

AS AN EXAMPLE of some of the types of transformations that are easily available by using
trigonometric functions, we will consider the skewing and rotating of an image. The term
transformation simply means the mathematical manipulation of a graphic image in some
manner, such as scaling, translating, rotating, and so forth.

To skew an image means to add some angular value to the coordinates along the x
or y axis, or both. When added to a single axis, the coordinates along the other axis are un-
altered. The equation for skewing is:

x=y-+tan (1)
y=x-+tan (t)

The listings SKEWX and SKEWY perform skewing on the One Hundred Squares pro-
gram. The program has been modified somewhat from its original state. In this case the
skew is performed on the ROW and CLM values and is then added to the x and y origin
value. If this had not been done, the angular skew value would have been added to the
figure plus the distance from the origin.

10
20 CLS

' SKEWX

30 MOVE$=""1!1AX"

40 DRW$="!AY"

50 OPEN "COM1:1200,0,7,1" AS #1
60 PRINT #1,"!AE";

70 INPUT "X origin";X0

80 INPUT "Y origin";YO

90 INPUT "Step size'";SIZE

100 INPUT "Side of square";SIDE
110 INPUT "Rotation";T

120 T=T*(3.141593/180)

130 FOR ROW=.1 TO SIZE*10 STEP SIZE

140 FOR CLM=.1 TO SIZE*10 STEP SIZE

150 GOSUB 360

160 PRINT #1,MOVE$+STR$((CLM*TAN(T))+XO0+ROW)+STR$ (CLM+YO)

170 GOSUB 360

180 PRINT #1,DRW$+STR$((CLM*TAN(T))+XO+SIDE+ROW)+STR$ (CLM+YO)
190 GOSUB 360

200 PRINT #1,DRW$+STR$(((CLM+SIDE)*TAN(T))+X0+SIDE+ROW)+STR$(CL
M+SIDE+YO)

210 GOSUB 360

(continued on next page)

94
DRAWING WITH COMPUTERS

220 PRINT #1,DRW$+STR$(((CLM+SIDE)*TAN(T))+XO+ROW)+STR$ (CLM+SID
E+YO)

230 GOSUB 360

240 PRINT #1,DRW$+STR$((CLM*TAN(T))+XO+ROW)+STR$ (CLM+YO)+";"
250 NEXT CLM

260 NEXT ROW

300 PRINT

310 GOTO 70

320 !

330 !

340 '

350 !

360 '"XON/XOFF subroutine

10 ' SKEWY
20 CLS

30 MOVE$=""!AX"

40 DRW$="!AY"

50 OPEN "COM1:1200,0,7,1" AS #1

60 PRINT #1,"!AE";

70 INPUT "X origin";XO0

80 INPUT "Y origin";YO

90 INPUT "Step size";SIZE

100 INPUT "Side of square";SIDE

110 INPUT "Rotation";T

120 T=T*(3.141593/180)

130 FOR ROW=.1 TO SIZE*10 STEP SIZE

140 FOR CLM=.1 TO SIZE*10 STEP SIZE

150 GOSUB 360

160 PRINT #1,MOVE$+STR$ (XO+ROW)+STR$((ROW*TAN(T))+CLM+YO)

170 GOSUB 360

180 PRINT #1,DRW$+STR$ (XO+SIDE+ROW)+STR$(((ROW+SIDE)*TAN(T))+C
LM+YO)

160 GOSUB 360

200 PRINT #1,DRW$+STR$ (XO+SIDE+ROW)+STR$(((ROW+SIDE)*TAN(T))+C
LM+SIDE+YO)

210 GOSUB 360

220 PRINT #1,DRW$+STR$ (XO+ROW)+STRE((ROW*TAN(T))+CLM+SIDE+YO)
230 GOSUB 360

240 PRINT #1,DRW$+STR$ (XO+ROW)+STR$((ROW*TAN(T))+CLM+YO)+" ;"
250 NEXT CLM

260 NEXT ROW

300 PRINT

310 GOTO 70

320 !

330 !

340 !

350 '

360 'XON/XOFF subroutine

95 P

CIRCLES AND POLYGONS alIIllllh_
:lllIlllIlll
=ENE= L 11]]

Figs. 4 and 5 are plotted with two images. The unaltered squares image is plotted
from the same origin along with the same image skewed by an angle of 30 degrees. Note
that the coordinates of the unskewed axis are unaltered.

Finally, both the x and y axes can be skewed simultaneously. Listing SKEWXY—Fig.
6—has both the normal image and the x and y axes skewed at 30 degrees.

//
I
A 147
1A ///
[VTATAT AV TS s ace I
! Ald/
{ V
/1]
X 777 B l]
l —
= A
L)) i |
FIG. 4. FIG. 5. FIG. 6.
10 ' SKEWXY
20 CLS
30 MOVE$="1AX"
40 DRW$="!1AY"
50 OPEN "COM1:1200,0,7,1" AS #1
60 PRINT #1,"!AE";
70 INPUT "X origin";X0
80 INPUT "Y origin";YO
90 INPUT "Step size";SIZE
100 INPUT "Side of square";SIDE
110 INPUT "X skew";XT
111 INPUT "Y skew";T
120 T=T*(3.141593/180)
121 XT=XT*(3.141593/180)
130 FOR ROW=.1 TO SIZE*10 STEP SIZE
140 FOR CLM=.1 TO SIZE*10 STEP SIZE
150 GOSUB 360
160 PRINT #1,MOVE$+STR$((CLM*TAN(XT))+XO+ROW)+STR$((ROW*TAN(T)
)+CLM+YO0)

(continued on next page)

9
DRAWING WITH COMPUTERS

170 GOSUB 360

180 PRINT #1,DRW$+STRE((CLM*TAN(XT))+X0O+SIDE+ROW)+STR$(((ROW+S
IDE)*TAN(T))+CLM+YO)

190 GOSUB 360

200 PRINT #1,DRW$+STR$(((CLM+SIDE)*TAN(XT))+XO+SIDE+ROW)+STR$(
((ROW+SIDE)*TAN(T))+CLM+SIDE+YO)

210 GOSUB 360

220 PRINT #1,DRW$+STR$(((CLM+SIDE)*TAN(XT))+XO+RCW)+STR$ ((ROW¥
TAN(T))+CLM+SIDE+YO)

230 GOSUB 360

240 PRINT #1,DRW$+STR$((CLM*TAN(XT))+XO0+ROW)+STR$((ROW¥TAN(T))
+CLM+YOD)+" 3"

250 NEXT CLM

260 NEXT ROW

300 PRINT

310 GOTO 70

320 !

330 '

340 '

350 '

360 'XON/XOFF subroutine

ROTATION
ROTATION is a more commonly used procedure than skewing and involves similar princi-
ples. The trigonometry is somewhat more complex, but essentially simple. The equations
are:
x'= x-+cos (t) = y-sin(t)
Y = xesin (1) + y * cos (t)
These equations will rotate points about the origin. As in all previous examples, it is neces-
sary to add the translation value to this equation. If this is not done, the rotation will be
made about a radius equal to the translation dimension. As usual, our illustration, Fig. 7, is
of the hundred squares. The whole image is rotated about the origin. The origin is the
lower left carner. The ROW and CLM values are, in essence, the radius arms. The figure has
been rotated 30 degrees.
10 'ROT100SQ
20 CLS
30 MOVE$="!AX"
40 DRW$="!1AY"

50 OPEN "COM1:1200,0,7,1" AS #1
60 PRINT #1,"!AE";

70 INPUT "X origin";XO0

80 INPUT "Y origin'";YO

g0 INPUT "Step size'";SIZE]
100 INPUT "Side of square";SIDE

110 INPUT "Rotation";T

120 T=T*(3.141593/180) FIG. 7.
130 FOR ROW=.1 TO SIZE*10 STEP SIZE

140 FOR CLM=.1 TO SIZE*10 STEP SIZE

97

CIRCLES AND POLYGONS

S==g
SNSENEE=,,

= —
S T T
= ENSn
HRN== [771
— _Smm== &
— EREN== a5

FE== = PR/
==
BN=—mg-—_g-—-8

e =s B=
BE=E-g-—g_-"2°
- ..:EE_—‘.EEE T3
= N==_ =
=

ESsmE= -
= e
——— [
ESNSEESE - =

EESrP==ggg

-E=

150 GOSUB 360

160 PRINT #1,MOVE$+STR$((ROW*COS(T)-CLM*SIN(T))+X0)+STR$((ROW*SI
N(T)+CLM*COS(T))+YO)

170 GOSUB 360

180 PRINT #1,DRW$+STR$(((ROW+SIDE)*COS(T)-CLM*SIN(T))+X0)+STR$((
(ROW+SIDE)*SIN(T)+CLM¥*COS(T))+YO)

190 GOSUB 360

200 PRINT #1,DRW$+STR$(((ROW+SIDE)*COS(T)~(CLM+SIDE)*SIN(T))+X0)
+STR$ (((ROW+SIDE) *SIN(T)+(CLM+SIDE)*COS(T))+YO)

210 GOSUB 360

220 PRINT #1,DRW$+STR$ ((ROW*COS(T)~-(CLM+SIDE)*SIN(T))+X0)+STR$((
ROW*SIN(T)+(CLM+SIDE)*COS(T))+YO)

230 GOSUB 360

240 PRINT #1,DRW$+STR$ ((ROW¥COS(T)~CLM*SIN(T))+X0)+STR$((ROWXSIN
(T)+CLM¥®COS(T))+YO0)+";"

250 NEXT CLM

260 NEXT ROW

300 PRINT

310 GOTO 70

320 '

330!

340 '

350 '

360 'XON/XOFF subroutine

The listing is fairly straightforward, except that the lines that do the actual work of
rotation become fairly long. Note that the dimensions XO and YO are the translation
values, These values are added to the rotation values after the rotation has been performed.

THE TWO-DIMENSIONAL TRANSFORMATION

THE VARIOUS MANIPULATIONS we have performed comprise the two-dimensional
transformation. Scaling, translating, rotating, and sometimes skewing enable you to take
any point, or collection of points, and move them about the two-dimensional surface of
the screen or paper. All of these graphics actions can be performed in various combina-
tions. It is very important to note the sequence in which these actions are performed. As an

DRAWING WITH COMPUTERS

illustration we will take our hundred squares and first do a scaling operation and then ro-
tate the resulting figure. Then we will reverse the order. The rotation listing is modified by
simply adding a line that scales the ROW, CLM, and SIDE along the x axis. The y axis values
are not scaled.

Changes in the transformation sequence can produce very divergent results. It is al-
ways important to carefully consider the order of any transformation, because the resulting
image can be very different in its visual appearance.

THE DEGENERATE LINE

MOST PAINT PROGRAMS feature some type of variable brush. As the cursor is moved
across the screen, the software will respond with a variety of different effects. As we have
seen, these graphic traces can be very elementary, such as a trail of pixels that correspond
to the simple trace we leave when a line is drawn with a pencil or pen. At the other ex-
treme, paint programs can leave all manner of elaborate traces—airbrushings, or whatever
the artist or programmer might choose to supply to the computer.

A similar strategy can be employed in drawing with the computer when using a
program that generates its own figure. In the case of the One Hundred Squares program,
we gave the computer a series of parameters, and the machine then proceeded to produce
a figure. However, we might wish to modify the program with some sort of line-drawing
procedure, This is easily done. A single square consists of four lines, each line moving in a
different direction. The first line moves in a positive x axis direction with no change in the y
coordinate, the second moves in a positive y axis direction, and so forth. Therefore we need
to provide four different subroutines to accommodate these relative motions.

Each of these subroutines will then subdivide the line segment into a number of in-
termediate line segments. When this is done, we can then apply some value to the line. As
a foil to the precise, geometric lines that have predominated in these figures, we will add a
random value. This random value is added with a BASIC function. At each subsegment a
new randomly generated value will be added to the x or y coordinate value—dependent,
of course, on the relative motion of the line.

10 DEFINT A-Z' TEXSQ

20 CLS

30 MOVE$=""!AX"

40 DRW$="!1AY"

50 OPEN "COM1:1200,0,7,1" AS #1
60 PRINT #1,"!1AE";

70 INPUT "X origin";X0

80 INPUT "Y origin";YO

99

CIRCLES AND POLYGONS ==NN=
J.... =
E.............

.
...ﬂ'i. ==

NEREN=N=:-N=
NSRS ==RE 0=

90 INPUT "Step size";SIZE

100 INPUT "Side of square";SIDE

110 INPUT "Line increment";INCR

120 SI=SIDE/INCR

130 INPUT "Random value";RV

140 DEF FNYINCR=RND*RV+1

150 FOR ROW=XO TO XO+SIZE*Q STEP SIZE

160 FOR CLM=YO TO YO+SIZE*9 STEP SIZE

170 GOSUB 360

180 PRINT #1,MOVE$+STR$ (ROW)+STR$(CLM)
190 GOSUB 360

200 GOSUB 470

210 GOSUB 360

220 GOSUB 550

230 GOSUB 360

240 GOSUB 630

250 GOSUB 360

260 GOSUB 710

270 PRINT #1,MOVE$+STR$(ROW)+STR$(CLM)+";"
280 NEXT CLM

290 NEXT ROW

300 PRINT

310 GOTO 70

320 '

330 '

340 !

350 '

360 'XON/XOFF subroutine

470 'X +

480 '

490 !

500 FOR II=ROW TO ROW+SIDE-SI STEP SI

510 GOSUB 360

520 PRINT #1,DRW$+STR$(II)+STR$(CLM+FNYINCR)
530 NEXT II

540 RETURN (continued on next page)

100

DRAWING WITH COMPUTERS

550 'Y +

560 !

570 '

580 FOR II=CLM TO CLM+SIDE-SI STEP SI

590 GOSUB 360

600 PRINT #1,DRW$+STR$ (ROW-FNYINCR+SIDE)+STR$(II)
610 NEXT II

620 RETURN

630 'X -

640 '

650 '

660 FOR II=ROW+SIDE TO ROW+SI STEP =-SI

670 GOSUB 360

680 PRINT #1,DRW$+STR$(II)+STR$(CLM-FNYINCR+SIDE)
690 NEXT II

700 RETURN

710 'Y -

720 !

730 !

740 FOR II=CLM+SIDE TO CLM STEP -SI

750 GOSUB 360

760 PRINT #1,DRW$+STR$ (ROW+FNYINCR)+STR$(II)
770 NEXT II

780 RETURN

Fig. 9 uses the same dimensions for the square in each case, but uses different ran-
dom values, When small values are used, the line successfully mimics the motion of the
hand. When the values become larger, the hand becomes somewhat shaky. And when very
large values are used the graphic effect becomes quite different again. It should be noted
that in all these cases the random value is positive, thus tending to move the line toward
the center of the square, But it could just as easily be negative, which would result in the
line swelling the square.

SOOI SR
% 11 Wé fEiniws
L] m pw iy
LI (T 3R
I [(] $A%3
NINE i
L I] 3358
0T 1 ALt
0 00 0 0 O A
R a0 TRy
FIG. 9%a FIG. 9b.

In the same way, this figure can be drawn with a regular pattern. We will use the
identical procedure of subdividing the line segment, but the perpendicular increment will
be a constant value rather than a random value. After each excursion to this value, the line
will return to the original position on the line. Thus, the line will take on a zigzag appear-
ance.

101
CIRCLES AND POLYGONS

EZ L] 77
L LA
& LA
Hem-Z Y 74
Ll L /77
- g
Y 7
Ay s, g
e
y A L
- =
y
luuy"'5!§§$55
55,....'.".5' -

£ 2
ez vy,

450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810

'X +

A\
'

FOR II=ROW TO ROW+SIDE-SI STEP SI
GOSUB 340
PRINT #1,DRW$+STR$(II)+STR$(CLM+ZV)
PRINT #1,DRW$+STR$(I1)+STR$(CLM)
NEXT II
RETURN
'Y +

FOR II=CLM TO CLM+SIDE-SI STEP SI
GOSUB 340
PRINT #1,DRW$+STR$ (ROW-ZV+SIDE)+STR$(II)
PRINT #1,DRW$+STR$(ROW+SIDE)+STR$(1I)
NEXT II
RETURN
lx-
A\l
1

FOR II=ROW+SIDE TO ROW+SI STEP =-SI
GOSUB 340
PRINT #1,DRW$+STR$(II)+STR$(CLM-ZV+SIDE)
PRINT #1,DRW$+STR$(II)+STR$(CLM+SIDE)
NEXT II
RETURN
'Y_
'
'

FOR II=CLM+SIDE TO CLM+SI STEP =-SI
GOSUB 340
PRINT #1,DRW$+STR$ (ROW+ZV)+STR$(II)
PRINT #1,DRW$+STR$ (ROW)+STR$(II)
NEXT II
PRINT #1, DRW$+STR$(ROW)+STR$(CLM)+";"
RETURN

102

DRAWING WITH COMPUTERS

To prevent the zigzag pattern from overlapping at the end of the line segment, the
line increments end at the line dimension minus the line increment. This was purely an
aesthetic decision rather than a mathematical choice. The line could just as easily have
continued zigging and zagging to the end of the segment. Similarly, the line segment ter-
minates at the actual point of the ROW and CLM dimensions, but need not have. In the
case of the random value, the line could have terminated when it reached a value equal to
or greater than the ROW and CLM dimension. Often, such algorithmic decisions must be
made on a purely visual basis.

FIG. 10d.

These subroutines only provide for horizontal and vertical motion. If we wanted to
include line vectors at oblique angles it would be necessary to include some type of vector
generator. Naturally, this would complicate the program, but it is certainly achievable.
Some types of display devices include line types that have been implemented in the hard-
ware or firmware. Most commonly, they include dotted and dashed lines, or, in some cases,
you can define your own line types.

Creating different line types can provide a useful and interesting tool. While such
line types are in some sense a purely decorative device, they can be very important in the
creation of an overall aesthetic effect in a picture. Variations in line widths are usually very
simple to create, but it is not always simple to join different line segments in a consistent
fashion, In the case of the squares, the program could be modified to draw a series of lines
parallel to the original box figure.

103
PHOTOGRAPHY

oo L7
—f—'"".

9. PHOTOGRAPHY

CURRENTLY there is relatively little low-cost equipment available for converting photo-
graphic images into digital images. A photographic image must be converted into a series
of digital values. In the case of a black-and-white photograph, the tonal values must be
converted into a gray scale. A gray scale represents the different tonal values, from light to

FIG. 1. Thomas Porett. 1983 screen image photographed with a Lang camera. Apple with video
digitization and paint system. © 1983 Thomas Porett,

104

DRAWING WITH COMPUTERS

v

#

o

FIG. 2. Thomas Porett. 1983 screen image photographed with a Lang camera. Apple with video
digitization and paint system, © 1983 Thomas Porett.

dark, that exist in the photographic or video image. A color image would have to be con-
verted into tonal values as well as hues

A conventional photographic image, such as a color slide or photographic print, can
be scanned by specialized equipment known as a densitometer. Such equipment is expen-
sive. Video images, by virtue of being already encoded electronically, are more potentially
useful to the computer. A device known as a frame grabber, or video digitizer, can take a
video signal and encode it into digital values. It is also possible to mix the video signals
from a computer with the video signals from a camera or a video recording. While such
devices are not cheap and are not widely available, the great proliferation of home video
recorders may well create an incentive for manufacturers to produce inexpensive devices
that will allow the interfacing of photographic material with computers.

Needless to say, once an image has been digitized, it can be manipulated in a vast
variety of ways with the computer. Nancy Burson, an artist working with photographs of
famous people, has produced a highly amusing series of photographs called The Compos-
ite News. In one example, she digitized a series of photographs of famous autocrats, Hitler,
Mao, and so forth. The digital values from the faces are averaged and a composite facial
image is produced from the resulting values.

105
PERSPECTIVE: THREE-DIMENSIONAL GRAPHICS

10. PERSPECTIVE: THREE-DIMENSIONAL GRAPHICS

UP TO THIS POINT we have concentrated on two-dimensional images. Two-dimensional
images lack the third dimension of depth. Of course, we are discussing display devices that
have only the capability of presenting two dimensions, such as a video screen or printer
or plotter. But the illusion of depth can be produced within the confines of a two-
dimensional display.

One of the centrai triumphs of early Western art was the accurate analysis of per-
spective. Painstaking methodology contributed to an understanding of how to accurately

FIG. 1. Robert Mallary. 1983 two-color plotter drawing on paper. INTRPL3D software running on a
CDC Cyber, with a four-pen CalComp drum plotter. © 1983 Robert Mallary.

106
DRAWING WITH COMPUTERS

render objects in an illusionistic three-dimensional world. The picture became regarded as
a window that the viewer would look through. Today, art students sometimes study these
methods using vanishing-point perspective. We are all familiar with the illusion of two
parallel lines, such as railroad tracks or roadways, converging at the distant horizon. While
vanishing-point perspective is adequate for rendering many objects by hand, more rigor-
ous techniques are necessary when drawing with the computer.

The x and y axes of the two-dimensional plane are well known to us. To fully de-
scribe an object or point in real space, or in three-dimensional space, we must specify both
the x and y coordinates, and a third coordinate of depth. By convention, this depth coordi-
nate is called the z coordinate, which lies along the z axis. The z axis runs perpendicular to
the plane formed by the x and y axes. A point would be specified by three coordinates, x, y,
and z. Our square, converted into a three-dimensional solid, a cube, could be described by
listing the coordinates of each of the corners, or vertices:

Vertex X Y Z
Lower left corner 0 0 0
Lower right corner 100 0 0
Upper right corner 100 100 0
Upper left corner 0 100 0
Lower rear left corner 0 0 100
Lower rear right corner 100 0 100
Upper rear right corner 100 100 100
Upper rear left corner 0 100 100

ROTATION ABOUT THREE AXES

REDUCED TO THE ESSENTIALS, producing three-dimensional graphic rotations involves
two major operations: rotating the point coordinates around three axes and creating the
necessary projection of the three-dimensional depth onto a two-dimensional viewing sur-
face,

A proper comprehension of the mathematical problems of the three-dimensional
rotations should include an understanding of matrix algebra. Matrix techniques can also be
applied to two-dimensional transformations. While matrix algebra is not difficult, it is be-
yond the scope of this discussion. The reader should consult a standard text on the mathe-
matical principles involved. The classic work is Newman and Sproull’s Principles of
Interactive Computer Graphics and a good practical discussion is given in Artwick’s Ap-
plied Concepts in Microcomputer Graphics (see bibliography, p. 127). We can, nonethe-
less, proceed with some of the problems involved.

If we think back to the problem of rotating our One Hundred Squares, we remember

107

PERSPECTIVE: THREE-DIMENSIONAL GRAPHICS

g

that two trigonometric equations were used that calculated the new x and y coordinates as
a point was rotated around an axis. If we were to rotate that flat planar figure around the 2z
axis, all of the x and y values would be altered by the rotation but none of the z values
would be changed. Such a rotation around the z axis does not change any depth values.

Likewise, if we were to rotate the flat figure of the squares around the x axis, the z
depth values and the y axis values would be altered by the x axis values will all remain the
same.

If the figure were rotated around the y axis, the x values and z values would change,
but the y axis values would remain unchanged.

The three-dimensional rotation employs all three of these rotations sequentially.
Each rotation is performed on the results of the previous rotation. As in the two-dimen-
sional transformation, the order of the rotations is important in terms of the final results.

The direction of rotations is also important. The direction is indicated by the sign of
the rotation angle. A positive or negative value will rotate the figure in opposite directions
about the particular axis.

THE PERSPECTIVE PROJECTION

THE THREE AXIS ROTATIONS will produce a geometrically proper rotation of a point in
three-dimensional space. If we take this collection of coordinate information and project
these points onto a two-dimensional surface—the video screen or plotter paper—the
image will correctly show the rotated points but it will not reveal any of the familiar intui-
tive depth information that we obtain from the real world. In other words, in the real world
the tree that is close to our eye spans a large segment of our vision, while the tree on the
distant hillside spans only a small segment of our vision. The numeric information that our
system has provided about the depth and distance of points is contained in the z axis data.
A distant point will have a large z coordinate, while the nearby point will have a small z
value.

If we imagine two triangles formed by the eye, with sides being formed by the per-
pendicular faces of a cube (see Fig. 2 on p. 108), we can see that to correctly project the face
of the cube on a display surface requires scaling the x or y coordinates by the ratio formed
by the viewing distance divided by the viewing distance plus the z depth information.
While this is a somewhat simplified solution to the problems of projection, it nonetheless
represents the essential geometry of the problem.

The listing 3D is a subroutine that provides the necessary equations to rotate the flat
figure about the three axes. The rotations are arbitrarily in an x, y, and z sequence. Fre-
quently the three axes are referred to by another set of names that correspond to the mo-
tions of an aircraft. Pitch corresponds to x axis rotation, heading corresponds to y axis
rotation, and bank corresponds to z axis rotation. As in our previous two-dimensional ro-

108
DRAWING WITH COMPUTERS

FIG. 2.

tation program, we must convert angular values into a form the computer can use. This is
done early in the program to cut down on the amount of computation. These angular
values are:

Rx' = Rx » (3.141593/180)
Ry = Ry « (3.141593/180)
RZ = Rz + (3.141593/180)

The actual coordinate values are generated by the One Hundred Squares program and are
simply stored in a file. To simplify matters the figure is assumed to be a flat plane without
any depth. Thus, the z value—as stored in the file—is 1. The coordinates are generated from
the lower left corner, the origin, which has the value 0,0,0. When the figure is rotated about
any of the three axes, the rotation is about this origin. We could alter this point of rotation
simply by adding translation values to the coordinates, thereby shifting the rotational ori-
gin to another point. This translation should be performed before rotation.

10 '3D

20 DIM XX(501),YY(501),2Z(501)
30 OPEN "b:hunsq" FOR INPUT AS 1
40 IF EOF(1) THEN CLOSE:GOTO 80
50 INPUT #1,XX(I),YY(I),2Z(I)
60 I=I+1

70 GOTO 40

80 CLS

90 I=0

100 MOVE$=""!1AX"

110 DRW$="14AY"

120 OPEN "COM1:1200,0,7,1" AS #1
130 PRINT #1,"!AE";

140 INPUT "X origin";XO

150 INPUT "Y origin'";YO

160 INPUT "Rotate y";RY

170 INPUT "Rotate x";RX

180 INPUT "Rotate z";RZ

190 INPUT "Z scale";ZSC

200 RZ=RZ*(3.141593/180)

210 RY=RY¥*(3.141593/180)

220 RX=RX¥*(3.141593/180)

230 Z20=1

240 FOR ROW=1 TO 10

109

PERSPECTIVE: THREE-DIMENSIONAL GRAPHICS

250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640

FOR CLM=1 TO 10
GOSUB 440
PRINT #1,MOVE$+STR$ (X)+STR$(Y)
GOSUB 440
PRINT #1,DRW$+STR$(X)+STR$(Y)
GOSUB 440
PRINT #7,DRW$+STR$(X)+STRE(Y)
GOSUB 440
PRINT #1,DRW$+STR$(X)+STR$(Y)
GOSUB 440
PRINT #1,DRW$+STR$(X)+STR$(Y)+";"
NEXT CLM
NEXT ROW
PRINT
END

'Y axis rotation
1

LOCATE 8, 1:PRINT XX(I);YY(I);ZZ(I)
1

X1=XX(I)*COS(RY)+ZZ(I)*SIN(RY)
Y1=YY(I)
Z1=-XX(I)*SIN(RY)+ZZ(1)¥*¥COS(RY)
A

LOCATE 9, 1:PRINT X1;Y1;21
Al

'X axis rotation
'

X2=X1

Y2=Y 1*COS(RX)=-Z 1*SIN(RX)
Z2=Y1%SIN(RX)+Z 1*COS(RX)
L]

LOCATE 10,1:PRINT X2;Y2;Z2
'

'Z axis rotation

' (continued on next page)

110
DRAWING WITH COMPUTERS

650 '

660 X3=X2*COS(RZ)-Y2¥*SIN(RZ)
670 Y3=X2*SIN(RZ)+Y2*COS(RZ)
680 Z23=Z2

690 '

700 '

710 LOCATE 11,1:PRINT X3;Y3;Z3
720 !

T30 !

740 '

750 X=(X3/(Z20+(Z3%ZSC)))+X0
760 Y=(Y3/(Z0+(Z3%ZSC)))+Y0
770 LOCATE 12, 1:PRINT X;Y
780 I=I+1

790 RETURN

We can now execute several rotations of our familiar hundred squares. Fig. 3 shows
the result of rotating the flat figure about the z axis by 30 degrees but does not rotate it
about either the x or y axis. An important practical matter to be noted here is the fact that a
very small, non-zero, value must be used in the program. This value—for example 0.001—
must be used to prevent a “division-by-zero” error when the program executes. Fig. 4
shows the image rotated about the z and y axes by 30 degrees. Finally, in Fig. 5 it is rotated

FIG. 3.

m
PERSPECTIVE: THREE-DIMENSIONAL GRAPHICS

about all three axes by 30 degrees. Because the observer’s viewpoint is relatively close to
the figure, a certain amount of distortion is seen. This is similar to the distortion in a pho-
tograph taken with a wide-angle lens. Figs. 6 and 7 show the same image as if from differ-
ent viewpoints. Fig. 6 shows distortion equivalent to that of a photo taken with a very wide
angle lens, while Fig. 7 would be similar to one taken using a telephoto lens. In these pic-
tures the z depth values are, respectively, quite large and quite small.

By a simple modification to the program we can also draw a more complex image.
We have the data for a flat planar figure of One Hundred Squares. But, by using the raw x
and y values and then creating another figure with the same x and y values but with a dif-

112
DRAWING WITH COMPUTERS

ferent z value, it is possible to construct a wireframe model of a rectangular solid. The flat
planar figure becomes a true representation of a three-dimensional solid. Figs. 8, 9, and 10
reveal this solid object from our three different viewpoints.

113

PERSPECTIVE: THREE-DIMENSIONAL GRAPHICS

Finally, this three-dimensional wireframe model can be easily modified. As an ex-
ample, we can supply the random-number test used earlier and modify the dimensions of
our figure, About half of the squares are plotted in Fig. 11.

REALISM AND THE SYNTHETIC PICTURE

IT IS POSSIBLE to construct simple wireframe models of solids. Very complex figures can
also be constructed with wireframe models. The hundred squares, or rather, the hundred
cubes, can be converted into a representation of a three-dimensional object. The cubes
consist of six polygons. By extension, almost any sort of object can be represented by
building complex, polygonal wireframe models. Such constructions, while useful, are only
the palest reflection of the visual reality that surrounds us. Our everyday visual reality con-
sists of objects and space, Relatively small numbers of those objects are wireframe objects;
most objects have complex, highly variable opaque surfaces that reflect colored light in
many different ways.

Thus one of the most immediate problems confronting us in creating a computer-
generated image that would mirror reality is the depiction of opaque objects. We cannot
see through most objects. This problem is known in computer graphics as the hidden-line
or hidden-surface problem. How can the machine eliminate or erase the lines or surfaces
that are hidden by the surface of a real object as we see it?

Much work has been done on this problem. There are a variety of approaches and
most of them involve a sorting procedure, A three-dimensional scene, with the attendant 2z

114
DRAWING WITH COMPUTERS

axis depth information, contains numeric data about the distance of various objects from
the eye. These polygonal surfaces can be sorted by the computer before they are displayed.
Obviously, it will require a considerable amount of computation time to perform the sort if
a picture has a large number of polygons

One of the most common techniques used to sort polygons relies on the fact that
some of the polygons are facing toward the viewer, while some are facing away. Those that
are facing away would not be visible and therefore need not be displayed. This technique
works for single objects, but it cannot resolve the display of multiple, overlapping objects.
Other techniques examine the z depth of each pixel to be displayed in a video display sys-
tem. Of course, even a medium-resolution display will require considerable time for a
search if a considerable number of surfaces are involved.

After the image has been searched and the hidden lines or surfaces have been elimi-
nated, illumination must be provided. The question of illumination has two aspects. First,
what is the quantity and quality of the illumination, and, second, what happens to the light
when it strikes the surface of the objects.

The light impinging upon a scene may come from a single discrete source, from
multiple sources, or from diffuse sources. In the case of light coming from specific sources,
shadows must be calculated.

FIG. 12a. lsaac Victor Kerlow. Mask 1.7, 1984 screen FIG. 12b. lsaac Victor Kerlow. Mask 7.2, 1984 screen
photograph. VAX 11/780 and Grinell 270 color terminal. photograph. VAX 11/780 and Grinell 270 color terminal.
© 1984 Isaac Victor Kerlow, © 1984 Isaac Victor Kerlow.

115
PERSPECTIVE: THREE-DIMENSIONAL GRAPHICS

FIG. 13. Frank Dietrich. Vedic Blobs, 1984 screen photograph, 24-bit frame buffer. © 1984 Frank
Dietrich.

As the light hits a surface it is reflected, absorbed, or transmitted. This simple de-
scription is absolutely accurate, yet it is somehow totally inadequate when we contemplate
the extraordinary variety of ways that light can be modulated by surfaces. Consider such
disparate objects as flesh, glass, water, leaves, or clouds. Mathematical procedures have
been created that will account for some of the different ways in which surfaces reflect and
transmit light.

Some algorithms calculate, pixel by pixel, the actual values of light that is reflected
or transmitted. This is called ray tracing. Such ray tracing actually calculates the path of
light rays from each pixel in the image. Needless to say, ray tracing requires large amounts
of processing, but represents a great advantage in terms of pictorial accuracy.

116

DRAWING WITH COMPUTERS

THE SUCCESSES AND FAILURES OF THE SYNTHETIC PICTURE

IN LITERALLY TWO DECADES, computer graphics technology has evolved from rudimen-
tary graphics systems to highly complex picture-making devices. High-speed computers
coupled to very high resolution monitors capable of displaying millions of different hues,
driven by enormously complex software, have created pictures such as The Road to Poinl
Reyes. (See Fig. 1, p. 9.) But because of the technical difficulty, expense, and software com-
plexity involved in making these detailed images, most of these images have been pro-
duced in industrial and scientific settings. Frequently, the software is written
collaboratively. As microcomputer graphics systems increase in capacity and decrease in
cost, the near future should see startling advances in low-cost synthetic realism. Naturally,

¥

®

@ @
@
& ™
& @
& &
& &
& &
@ &®
@ &
® &
® @

FIG. 14. Joe Pasquale. Hello Plugs, 1983 screen photograph. APL and Digital Effects Vision System
software running on an IBM 4341 and PDP 11/34, © 1983 joe Pasquale/Digital Effects.

117

PERSPECTIVE: THREE-DIMENSIONAL GRAPHICS

FIG. 15. Joe Pasquale. Supervisor of Extensions, 1983 screen photograph, @ 1983 Joe
Pasquale/Digital Effects.

there is great commercial incentive to develop the software techniques for modeling and
simulating the visual world. Some of the most conspicuous examples have been in movie
animations such as those used in Tron and The Wrath of Khan, Highly realistic computer
images are also used in aircraft flight simulators. As hardware continues to improve and
software becomes widely available, it is to be expected that more artists will be able to use
these techniques of computer-generated illusionism.

While such simulations represent a great achievement, there remains much to be
accomplished. An algorithmic simulation of the human body is very difficult. This should
hardly come as a surprise—it is very difficult to accurately render the human body by tradi-
tional artistic means, Or, at least, it requires considerable training and study, not to men-
tion talent. Indeed, it is possible to view art history as a record of artists’ struggles to master
illusionism, Many realistic computer images have a strange, wooden quality about them. It
is obvious that many of the artist’s hard-won conventional techniques have yet to be suc-
cessfully applied to computer-generated images. Much of the computer work on the simu-
lation of reality has centered on creating a photographic likeness of the world. Yet painters

118

DRAWING WITH COMPUTERS

FRACTALS

FIG. 16. Fractal

have long known that mere likeness is not a guarantee of success. Often, artists have se-
lectively eliminated the details in a picture in order to enhance and enlighten our vision.

ONE OF THE new mathematical techniques that has been used in creating images is fractal
geometry. Although the subject has many highly technical aspects, computer graphics have
made fractals instantly accessible to everyone. To greatly oversimplify, the geometric pro-
cess essentially consists of taking some figure—typically, a line segment—and performing a
subdivision or deformation of that segment. The same action is then performed on the re-
sulting subsegments. The action is repeated again and again. Fig. 16 shows a pattern that
has been created using a procedure developed by Benoit Mandelbrot, a French mathemati-
cian. One side of a square is divided into three equal line segments. Using three such line
segments, a U-shaped figure is constructed between the first and second segments. This
procedure is then used again on the resulting five line segments. After plotting the figure
with the U shape swelling outward, the square is then plotted with the U shape swelling
inward,

Such fractal procedures have also been used to create realistic scene simulations.
The marriage of these fascinating mathematical operations with computer graphics offers
us a hint of what the future may hold. The intellectual and visual vitality of fractal geome-
try and synthetic realism cannot fail to stimulate the artistic imagination.

19

PAST, PRESENT, AND FUTURE

11. PAST, PRESENT, AND FUTURE

IN THE PAST, computer art has elicited much interest. While the art world became ena-
moured with technology in the late sixties, it soon lost interest. The excitement of the fa-
mous Experiments in Art and Technology—EAT—soon gave way to waves of new
experiments and trends. New realism and photorealism became dominant in the seventies
and, in turn, were displaced by a rekindled interest in expressionism. Thus, the official New
York art world has largely ignored computer art.

In many cases, the attitude was well justified. The computing community has unfar-
tunately muddied the question by a very simple failure of language. The computing com-
munity has been guilty of confusing two things—pictures and art. In the early days of
computer graphics, any picture that was made by a computer was automatically labeled
“computer art.” This semantic confusion probably can be forgiven, because of the initial
excitement in being able to make a computer produce some kind of image. But it is, unfor-
tunately, a confusion that is alive and well today. While many computer-produced images
are extraordinary and fascinating, they are not necessarily art. Too often, the standard
“computer art” image is some type of Spirograph-like, symmetrical figure. Such images do
indeed intrigue the eye, but soon become tedious and cloying.

The situation is reminiscent of what followed the introduction of the kaleidoscope
in England by Sir David Brewster (1781-1868). Brewster was a Scottish scientist who in 1819
published “Treatise on the Kaleidoscope.” He constructed an instrument that was essen-
tially identical to the modern kaleidoscope and coined a Greek name meaning “beautiful-
image viewer.” Brewster believed that the instrument would be useful in the arts and even
thought that it might lead to a new art form, which he called “color music.” The kaleido-
scope became a wild success in London and Paris, Thousands were sold.

We have all used kaleidoscopes with great delight. Yet few of us would describe
these experiences as the pinnacle of art making. The kaleidoscope offers an interesting
parallel to the computer as picture maker. Obviously, the computer as image viewer is ca-
pable of more than a kaleidoscope, yet many of the images produced with the computer
have failed to go beyond the most obvious capabilities of the machine. Like the kaleido-
scope, the computer effortlessly takes an image, mirrors the image, and repeats the image.

Often pictures made with paint programs suffer from a similar confusion between
what is art and what is merely a picture. A clumsy, inept image that was drawn on a screen
is described as art purely because it was drawn with a computer: Had the same image been
created with a pen or paintbrush, it would be ignored. The magic of image making with a
computer sometimes blurs our aesthetic sensibilities.

Often the issue of taste masks a more interesting issue: What methodology should

120

L S S—h B o : 3 2oss
FIG. 1. Michael Arent. Fiffel, 1983 screen photograph. Microcomputer workstation with tablet and
video digitizer. © 1983 Michael Arent,

the artist use in making images with the computer? The two extremes of this question are
represented by images that are created without any direct intervention of the artist and
images that are created totally by direct intervention of the artist. Artists like the Bangerts
and Harold Cohen create drawings that take their form from the peculiarities of the soft-
ware. When the program executes, the drawing will be made based purely on internal de-
cisions of the software. Naturally, all of those decisions the software is making are
ultimately made by the programmer-artist. At the other extreme are artworks made with
paint programs. Such works are produced by what are essentially extensions of conven-
tional art-making techniques, The computer is used simply as an electronic tool. Between
these two extremes is a broad spectrum of art-making strategies that rely on both the in-
tervention of the artist and the internal decision making of the software. Personally, it
seems to be that both approaches are valid. If the image is exciting and interesting, whether
it was produced with a generative process or a paint program is irrelevant. Much of the ex-
citement in computer graphics derives from the vigor of the image making, and while many
of these images are artistically naive, often they represent a dramatic new viewpoint. Just as
those who would make pictures with the computer can learn a great deal by studying art
and art history, by the same token, the artist can learn a great deal from the special prob-
lems of creating pictures with the computer. Computer graphics have shown us things we
could not see before. What could be more exciting and stimulating to the artist?

As microcomputers continue to increase in power and speed while simultaneously
decreasing in cost, graphics peripherals will follow this same pattern, although probably
not as dramatically. As we have seen, the artistic and graphics applications of these ma-
chines are so diverse that it is hard to characterize all of the ways they will be employed.
This book has concentrated on static two-dimensional uses. But the artist can employ these
machines in many other ways. Like the camera, the computer can produce either individual
still images or dynamic, moving images. Because of their very nature, dynamic images, on
both video and conventional film, will continue to be very important, Dynamic computer
imagery will probably evolve into a separate genre, related to still images as cinema is to
still photography.

121
PAST, PRESENT, AND FUTURE

FIG. 2. David Morris. River Crystal I, 1982 aluminum sculpture, 60 inches high.
© 1982 David Morris.

FIG. 3. Martin Nisenholtz, Screen from 1983 interactive videotex story, Mystery of the Drink,
composed entirely of pictograms. © 1983 Martin Nisenholtz,

NANLCY REAGAN HUITH
MARIA MANHATTAN (11N

DEFINITION
WHAT IS THIS®

[2][m]
SNAPSHOTS

BY MARY BEAMS

5] =]

STARBOY
LADY McCRADY

[4] [m]

CONTENTS
[>][m]

FIG. 4. Maria Manhattan and Martin Nisenholtz. 1983 cover videotex screen from The Electronic
Gallery. © 1983 Martin Nisenholtz and Maria Manhattan,

123
PAST, PRESENT, AND FUTURE

———

Artists who work in three-dimensional media, such as sculptors, are also learning to
use the computer. All of the CADCAM techniques that have been employed by industry
are applicable by the sculptor. He or she can design a sculpture on the screen. The piece
can then be colored with various paints, patterned, rotated, viewed from a variety of as-
pects, and set into various environments. When the design has been settled upon, the
computer can engineer the object, draw up specifications and a bill of materials, calculate
the costs, and finally draw the blueprints.

The inherently interactive nature of computers offers much potential in creating dia-
logues between people and the machines, Relatively little has been done in this area, but
microcomputers would seem to be a natural medium for such undertakings. Interactive
projects in New York City and Sao Paulo, Brazil, have used videotex in an artistic context,

D

SEN—

'-t..

fa

FIG. 5. Maria Manhattan. Nancy Reagan Takes the Subway, 1983 videotex screen. © 1983 Maria
Manhattan,

124
DRAWING WITH COMPUTERS

FIG. 6. Julio Plaza. A Saca da Casa, 1983 videotex screen, © 1983 Julio Plaza.

FIG. 7. Jane Veeder. From Floater, 1983 screen photograph. Datamax UV-1 computer and Zgrass
software, © 1983 Jane Veeder.

125
PAST, PRESENT, AND FUTURE

Videotex is a graphics-oriented television information system that allows the viewer to use
a keyboard to exchange information with the system. Julio Plaza, a Spanish-born Brazilian
artist, created an interactive videotex project called Art on Line. The viewers could, if they
desired, react to the artistic images on the screen, both choosing alternative images and se-
lecting different artists, as well as being able to leave criticisms and messages.

Another fertile area would seem to be the application of robotics and real-time
control. Robots are used in the automotive industry to paint auto bodies. Why not use
them to paint pictures? Robots also could be used in, say, environmental art gieces; and
microcomputers with real-time capabilities would seem to be an obvious means of control-
ling various processes and events in environmental artworks.

In most cases, the hardware exists to realize almost any sort of imaginable art
project. The software does not. It seems that the real future of computer-generated art-
works will depend on the development of appropriate software

126

GLOSSARY

Additive colors—A set of primary colors comprised of red,
green, and blue. When mixed together they produce
white.

Algorithm—A precisely defined mathematical procedure.
Commonly embodied in computer software as a
means of performing some type of operation.

Aliasing—The “stair-stepping” effect resulting from coarse
resolution of nonvertical or nonhorizontal graphic
elements, Sometimes called “jaggies.”

Bit-mapped display—A graphics display in which each
picture element—whether a pixel on a screen or a dot
from a matrix printer—can be directly controlled or
manipulated.

CADCAM—Computer-aided design, computer-aided man-
ufacturing. Sometimes CAD or CAM. An integrated
system for designing, drafting, and engineering archi-
tectural structures or industrial products.

Calligraphic—A line- or vector-drawing display device,
Lines are generated as “strokes” between endpoints,

Cathode ray tube (CRT)—A display device that uses a ras-
ter scan of electrons striking a phosphor-coated inner
surface to create an image. Televison sets and video
monitors both use cathode ray tubes.

Clipping—The removal of graphic information outside a
designated viewing area, or viewport. Can be per-
formed by hardware, software, or both,

Color lookup table—A list of the intensity values for the
red, green, and blue signals in a video display.

Composite video signal—The standard commercial video
signal used by television, video cassettes, and many
personal computers. The signal i1s defined by the Na-
tional Television Standards Committee (NTSC).

Computer graphics—Any sort of pictorial information
generated by a computer

Coordinates—Numeric values that define the position of
points on a surface. The most common form is the
Cartesian coordinate, which locates points on a two-
dimensional surface.

Cursor—A pointer indicating the current position on the
screen. It can be controlled by the keyboard, or by an-
other input device such as a mouse.

Digitizer—A graphics input device, typically a flat tablet
that can generate coordinates from the indications of
the user. Also refers to a device that can scan an image
and generate both coordinate and color-intensity in-
formation,

Display device—Commonly refers to video equipment
used to produce computer-generated visual informa-
tion, such as a monitor,

Dot-addressable—See Bit-mapped.

Dot matrix printer—A printer that generates characters or
images using a series of small dots,

Frame buffer or frame store—A segment of memory that
stores the information presented on a video display. It

stores the information about both location and color
value of each pixel.

Hard copy—Information generated by a computer and
stored in a permanent and accessible form. Typically,
this would be a printout, a plot, or a screen photo-
graph.

Hidden surface—Surfaces of objects that cannot be seen in
the real world because of the opacity of most objects,
Must be eliminated by software in a computer image
by means of various software techniques.

Host computer—T he computer, whether a micro or main-
frame, to which a peripheral device is connected.
Ink-jet printer—A color or monochrome printer that uses

very small draplets of ink to create an image.

Interlacing—A procedure in which alternatively odd and
even lines are displayed by the raster scan of a video
display. Standard American television uses 60 such
scans per second, to produce 30 complete images in
one second. Image flickering is subdued by interlac-
ing.

Light pen—A graphic input device that, when pointed at
the monitor screen, can determine if a pixel is on or
off. Used for drawing on screen, and menu selections.

Joystick—Mechanical graphic input device typically used
to control the relative position of the cursor on the
screen of a CRT. Used for games and drawing on
screen.

Monitor—Video display device. Can refer to television sets
as well as high-resolution RGB devices,

Mouse—Input device often used with graphics systems,
Commonly provides relative positional information
for a cursor on the screen. Used for drawing and menu
selections.

Paint system—A computer graphics drawing and painting
system, usually consisting of a computer, monitor,
graphics input device, such as a pad; and a paint pro-
gram. Mimics the conventional art-making process
electronically.

Persistence—The tendency for screen phosphors to glow
for a period of time after being struck by the raster
electron beam. Both fast and slow phosphors are used
in various types of display devices.

Pixel—Acronymn for picture element. The smallest dis-
crete graphic unit or addressable point capable of
being manipulated by the computer system. The
monitor screen consists of an array of pixels.

Plotter—A mechanical drawing device controlled by a
computer. Typically, plotters use ink pens, but some
machines utilize electrostatic plotting, photo plotting,
or other means of producing images.

Primitive—A simple graphic element that can be called up
with software. A line or circle would be an example of
a primitive,

Raster scan—The zigzag path traced by the electron beam

127

in a CRT. The electron beam passes over each pixel as
it scans the screen from top to bottom, right to left,
tracing across the odd and even lines in alternate
sweeps. See Interlacing.

Real-time graphics—Dynamic computer graphics images
that appear to simulate actual motion.

Resolution—A measure of the number of discrete units
that make up an image. Typically applied to the num-
ber of pixels that make up the displayed image.

RGB—Red, green, blue. The three computer-generated
color signals that form the image in high-quality color
CRTs.

Synthetic image—The illusionistic or realistic image that is
generated by computer graphics.

Three-dimensional (3-D)—Computer graphics imagery
that has an illusion of true perspective space. 3-D
graphics are projected on a two-dimensional surface
of the screen or plotter paper.

Transformation—Mathematical operations on an image

that produce a variety of different views. The most
important transformations are translating (moving the
image about), scaling (making the image larger or
smaller), and rotating the image.

Two dimensional (2-D}—Relatively simple computer
graphics imagery that does not contain the illusion of
true perspective space.

Vector—A line. Also see Calligraphic,

Videotex—A computer information service that combines
both text and graphics.

Viewport—A rectangular area into which a segment of an
image is drawn. Usually can be freely altered in x and
y dimensions.

Window—A two-dimensional portion of an image that is
projected onto the viewing surface or viewport.

Wireframe—An image of an object created with lines that
define a series of polygons.

World coordinates or world space—A coordinate system
denoting the actual dimensions of a depicted object.

BIBLIOGRAPHY

Asetson, Harown, and Anorea DiStssa Turtle Geomelry.
Cambridge, MA: MIT Press, 1981.

ArTwick, Bruce. Applied Concepts in Microcomputer
Graphics. Englewood Cliffs, NJ: Prentice-Hall, 1984,

Comnen, Harown, and Becky Couen, Art and Computers. Los
Altos, CA: W. Kaufmann, 1984,

Fouwy,).D., and A. van Dam. Fundamentals of Interactive
Computer Graphics. Reading, MA: Addison-Wesley,
1981,

Grerngirc, Donato, et al. The Computer Image. Reading,
MA: Addison-Wesley, 1982.

Jankit, Annagit, and Rocky Mortos. Creative Computer
Graphics. Cambridge, England: Cambridge University
Press, 1984,

Kertow, | V., and). Rosesusy, Computer Graphics for Art-
ists and Designers. New York: Van Nostrand, Rein-
hold, 1985.

Knuth, Donalo E. TEX and METAFONT, Bedford, MA: Dig-
ital Press, 1979.

Leavitr, Rutn. Artist and Computer. New York: Harmony
Books, 1976,

ManpeLsroT, Benont. The Fractal Geometry of Nature. New
York: W. H. Freeman, 1983,

Newman, W. M., and R. F. SproutL. Principles of Interactive
Computer Graphics. 2d ed. New York: McGraw-Hill,
1979,

Pererson, Date, Genesis 11 Reston, VA: Reston Publishing,
1983.

PrutiTt, Mewvin, Art and the Computer. New York:
McGraw-Hill, 1984,

PERIODICALS

Computer Graphics, “A Quarterly Report of SIGGRAPH
ACM.” The Association for Computing Machinery, 11
West 42nd Street, New York, NY 10036

Computer Graphics News. Scherago Associates Publishing,
Inc., 1515 Broadway, New York, NY 10036

Computer Graphics World. PennWell Publishing Com-
pany, 1714 Stockton Street, San Francisco, CA 94133

Computer Pictures. 330 West 42nd Street, New York, NY
10036

Computers and Graphics. Pergamon Press, Inc., Maxwell
House, Fairview Park, Elmsford, NY 10523

Leonardo. Pergamon Press, Inc., Maxwell House, Fairview
Park, Elmsford, NY 10523

128

INDEX

AARON, 1112
Absolute mode, 46-47
AIRBRUSH, 79
Albers, Josef, 17
American Standard Code for Information
Interchange (ASCHI), 26, 29, 43,
50-52, 56
Apple Computers
Apple 11, 15
Macintosh, 78
Atari 400, 78

Bangent, Colette and Charles, 120
BASIC, 15, 42-44, 49, 53, 55, 56, 64, 79, 88,
98

Bit-mapped displays, 26-27
Brewster, Sit David, 119
Buffer overrun, 53-54
Burson, Nancy, 104

CADCAM, 123

California Computers (CalComp), 9
Cartesian coordinate system, 44-46, 89-90
Centronics, 52

Circles, 88-102

Cohen, Harold, 11-12, 76, 120
Color mixing, 22-24

Color printing, 30-32

Commands, 49-52
Communications, 52-54
Coordinate systems, 44-48 89-93
CRT, see Video display

Degenerate line, %8-102
Descartes, René, 44
Digitizers, 80-82

Dot matrix printers, 29
Drum plotters, 32

EIA RS-232C, 52

Electronic Industries Association (EIA), 52

ELLIPTICAL BRUSH, 79

Experiments in Art and Technology (EAT),
119

Flatbed plotters, 32
FORTRAN, 43
Fractals, 118

General Purpose Interface Bus (GPIB), 52

Hardware
compatibility with other media, 14-15
cost and availability, 15-16
HATCHPLOT, 65-72
interactive, 72-75
Hewlett-Packard Interface Bus (HPIB),
52

1BM, 9
PCjr, 15, 42
Personal Computer (PC), 42, 43, 54, 55,
78-79, 87
1EEE-488, 52
Impact printers, 29
Ink, 36-38
Ink-jet printers, 30-31
Intel Corporation, 10
Interactive HATCHPLOT, 72-75
Interfaces, 52-54

Joysticks, 80-82
Knuth, Donald, 17

Letter quality printers (LQP), 29
Light pens, 80-82
LOGO, 44

MacPaint, 78

Marcus, Aaron, 18
METAFACE, 18
METAFONT, 17-18

Mice, 80-82

Microsoft BASIC, 42
Monet, Claude, 18
Monitors, see Video display

National Television Standards Committee
(NTSC), 24, 25
Nonimpact prnnters, 29-30

One Hundred Squares program, 57-64, 76,
98, 106, 108, 111
Oppenheimer, Ed, 19

Paint programs, 76-82
Paper, 39

Pascal, 43

Penl, 78-79

Pens, 16-38

Perspective projection, 107-13
Photography, 1034
of video display, 24-25
Plaza, Julio, 125
Plotters, 32-39
communications problems, 53
firmware, 36-38
language formats, 50-52
operation of, 35-36
POINT BRUSH, 79
Polar coordinates, 89-93
Polygons, 88-102
Printers, 28-32
Productivity, 16

Radio Shack Maodel |, 26
Relative mode, 46-47
Resolution, 25-26

RGB video signals, 24, 25
RND LINES, 79

Robotics, 125

Rotation, 96-97, 106-7
RS-232, 52, 53

Scanamural process, 14
Screendump, 83-87, 9, 92
Shadow mask CRT, 28
SIGGRAPH, 21

Skew, 93-96

Stella, Frank, 17

Synthetic pictures, 113-18

Thermal printers, 30

Thompson, D'Arcy, 92

Three-dimensional graphics, 105-18

IM Company, 14

Two-dimensional transformation, 97~
98

Vector generation, 48-49
Veeder, |ane, 21
Video display
bit-mapped, 26-27
color mixing, 22-24
photographing, 24-25
resolution, 25
shadow mask CRT, 28
Videotex, 125

World coordinates, 47-48

_,;*

SHILNdWOD

TS lwmmﬁw(ngm

'4

No ordinary computer graphics book, this is the first
guide to using computers for artistic drawings and
other innovative artmaking. Visual artists working in
traditional mediums as well as computer sophisticates
already generating computer graphics will welcome
this broad sampling of styles of computer art and the
step-by-step instructions with computer code. Soon you
can be “computing” art in your own individual style.

Perigee Books
are published by
The Putnam Publishing Group

Cover design copyright © 1985 by Mike Mclver

$9.95 Price Higher in Canada

8507

